Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from typing import Dict, List | |
import gradio as gr | |
import pandas as pd | |
import json | |
from src.core import * | |
app = FastAPI( | |
title="Insight Finder", | |
description="Find relevant technologies from a problem", | |
) | |
class InputData(BaseModel): | |
problem: str | |
class InputConstraints(BaseModel): | |
constraints: Dict[str, str] | |
# This schema defines the structure for a single technology object | |
class Technology(BaseModel): | |
"""Represents a single technology entry with its details.""" | |
title: str | |
purpose: str | |
key_components: str | |
advantages: str | |
limitations: str | |
id: int | |
# This schema defines the root structure of the JSON | |
class TechnologyData(BaseModel): | |
"""Represents the top-level object containing a list of technologies.""" | |
technologies: List[Technology] | |
async def process(data: InputData): | |
result = process_input(data, global_tech, global_tech_embeddings) | |
return {"technologies": result} | |
async def process_constraints(constraints: InputConstraints): | |
result = process_input_from_constraints(constraints.constraints, global_tech, global_tech_embeddings) | |
return {"technologies": result} | |
def make_json_serializable(data): | |
""" | |
Recursively convert tensors to floats in a data structure | |
so it can be passed to json.dumps. | |
""" | |
if isinstance(data, dict): | |
return {k: make_json_serializable(v) for k, v in data.items()} | |
elif isinstance(data, list): | |
return [make_json_serializable(item) for item in data] | |
elif isinstance(data, tuple): | |
return tuple(make_json_serializable(item) for item in data) | |
elif hasattr(data, 'item'): # torch.Tensor with single value | |
return float(data.item()) | |
else: | |
return data | |
def process_input_gradio(problem_description: str): | |
""" | |
Processes the input problem description step-by-step for Gradio. | |
Returns all intermediate results. | |
""" | |
# Step 1: Set Prompt | |
prompt = set_prompt(problem_description) | |
# Step 2: Retrieve Constraints | |
constraints = retrieve_constraints(prompt) | |
# Step 3: Stem Constraints | |
constraints_stemmed = stem(constraints, "constraints") | |
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") | |
print(constraints_stemmed) | |
# Step 4: Global Tech (already loaded, just acknowledge) | |
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading | |
# Step 5: Get Contrastive Similarities | |
result_similarities, matrix = get_contrastive_similarities( | |
constraints_stemmed, global_tech, global_tech_embeddings | |
) | |
save_to_pickle(result_similarities) | |
# Step 6: Find Best List Combinations | |
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) | |
# Step 7: Select Technologies | |
best_technologies_id = select_technologies(best_combinations) | |
# Step 8: Get Technologies by ID | |
best_technologies = get_technologies_by_id(best_technologies_id, global_tech) | |
# Format outputs for Gradio | |
matrix_display = matrix #.tolist() # Convert numpy array to list of lists for better Gradio display | |
result_similarities_display = { | |
item['id2']: f"{item['constraint']['title']} ({item['similarity'].item():.3f})" | |
for item in result_similarities | |
} | |
# Convert to JSON-safe format | |
safe_best_combinations = make_json_serializable(best_combinations) | |
safe_best_technologies = make_json_serializable(best_technologies) | |
# Now this will work safely: | |
best_combinations_display = json.dumps(safe_best_combinations, indent=2) | |
best_technologies_display = json.dumps(safe_best_technologies, indent=2) | |
print("best combinations") | |
print(best_combinations_display) | |
print("\nbest technologies") | |
print(best_technologies_display) | |
return ( | |
prompt, | |
"\n".join(f"'{k}': {v}" for k, v in d.items()), | |
best_combinations_display, | |
", ".join(map(str, best_technologies_id)), | |
best_technologies_display | |
) | |
# --- Gradio Interface Setup --- | |
# Define the input and output components | |
input_problem = gr.Textbox( | |
label="Enter Problem Description", | |
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." | |
) | |
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) | |
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) | |
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") | |
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) | |
output_final_technologies = gr.JSON(label="9. Final Best Technologies") | |
# Custom CSS for a professional look | |
custom_css = """ | |
/* General Body and Font Styling */ | |
body { | |
font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif; | |
color: #333; | |
background-color: #f0f2f5; | |
} | |
/* Header Styling */ | |
.gradio-container h1 { | |
color: #0056b3; /* A deep blue for the main title */ | |
text-align: center; | |
margin-bottom: 10px; | |
font-weight: 600; | |
font-size: 2.5em; | |
text-shadow: 1px 1px 2px rgba(0,0,0,0.1); | |
} | |
.gradio-container h2 { | |
color: #007bff; /* A slightly lighter blue for subtitles */ | |
text-align: center; | |
margin-top: 0; | |
margin-bottom: 30px; | |
font-weight: 400; | |
font-size: 1.2em; | |
} | |
/* Card-like styling for individual components */ | |
.gradio-container .gr-box { | |
background-color: #ffffff; | |
border-radius: 12px; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); | |
padding: 20px; | |
margin-bottom: 20px; | |
border: 1px solid #e0e0e0; | |
} | |
/* Input Textbox Styling */ | |
.gradio-container input[type="text"], | |
.gradio-container textarea { | |
border: 1px solid #ced4da; | |
border-radius: 8px; | |
padding: 12px 15px; | |
font-size: 1em; | |
color: #495057; | |
transition: border-color 0.2s ease-in-out, box-shadow 0.2s ease-in-out; | |
} | |
.gradio-container input[type="text"]:focus, | |
.gradio-container textarea:focus { | |
border-color: #007bff; | |
box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25); | |
outline: none; | |
} | |
/* Button Styling */ | |
.gradio-container button { | |
background-color: #28a745; /* A vibrant green for action */ | |
color: white; | |
border: none; | |
border-radius: 8px; | |
padding: 12px 25px; | |
font-size: 1.1em; | |
font-weight: 500; | |
cursor: pointer; | |
transition: background-color 0.2s ease-in-out, transform 0.1s ease-in-out; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.gradio-container button:hover { | |
background-color: #218838; /* Darker green on hover */ | |
transform: translateY(-2px); | |
} | |
.gradio-container button:active { | |
transform: translateY(0); | |
} | |
/* Labels for outputs */ | |
.gradio-container label { | |
font-weight: 600; | |
color: #495057; | |
margin-bottom: 8px; | |
display: block; /* Ensure labels are on their own line */ | |
font-size: 1.1em; | |
} | |
/* JSON Output Specific Styling */ | |
.gradio-container .json-display { | |
background-color: #f8f9fa; | |
border: 1px solid #e9ecef; | |
border-radius: 8px; | |
padding: 15px; | |
font-family: 'SFMono-Regular', Consolas, 'Liberation Mono', Menlo, Courier, monospace; | |
color: #212529; | |
white-space: pre-wrap; /* Preserve whitespace and wrap long lines */ | |
overflow-x: auto; /* Allow horizontal scrolling if content is too wide */ | |
max-height: 400px; /* Limit height and add scroll */ | |
} | |
/* Responsive adjustments (Gradio handles a lot, but for specific tweaks) */ | |
@media (max-width: 768px) { | |
.gradio-container { | |
padding: 15px; | |
} | |
.gradio-container h1 { | |
font-size: 2em; | |
} | |
.gradio-container button { | |
width: 100%; | |
padding: 15px; | |
} | |
} | |
/* Optional: Logo and Branding Placeholder */ | |
/* You would typically add an image element in your gr.Blocks() for a logo */ | |
/* Example if you have a logo image: */ | |
/* .logo { | |
display: block; | |
margin: 0 auto 20px auto; | |
max-width: 200px; | |
height: auto; | |
} */ | |
""" | |
# Create the Gradio Blocks demo with custom theme and CSS | |
with gr.Blocks( | |
theme=gr.themes.Soft(), # A modern, soft theme from Gradio | |
css=custom_css | |
) as gradio_app_blocks: | |
# Optional: Add your logo here | |
# gr.Image("path/to/your/logo.png", width=150, show_label=False, container=False, elem_classes="logo") | |
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") | |
gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.") | |
with gr.Row(): # Use a row for better layout on wider screens | |
with gr.Column(scale=2): # Input takes more space | |
input_problem.render() | |
with gr.Column(scale=1): # Button in a smaller column | |
gr.Markdown("Click to start the analysis:") | |
process_button = gr.Button("Process Problem", elem_id="process_button") | |
gr.Markdown("---") # Separator for visual clarity | |
gr.Markdown("### Processing Steps & Results:") | |
# Group outputs into columns for better organization | |
with gr.Row(): | |
with gr.Column(): | |
output_prompt.render() | |
output_constraints.render() | |
with gr.Column(): | |
output_best_combinations.render() | |
output_selected_ids.render() | |
output_final_technologies.render() | |
# Link the button to the processing function | |
process_button.click( | |
fn=process_input_gradio, | |
inputs=input_problem, | |
outputs=[ | |
output_prompt, | |
output_constraints, | |
output_best_combinations, | |
output_selected_ids, | |
output_final_technologies | |
] | |
) | |
gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio") |