File size: 7,258 Bytes
eb136bc
 
 
6044374
eb136bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00de41
 
 
 
 
 
eb136bc
 
 
6044374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb136bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00de41
 
 
 
 
 
 
eb136bc
 
 
 
c00de41
eb136bc
 
 
 
 
 
c00de41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb136bc
 
 
c00de41
 
 
 
 
 
 
 
 
eb136bc
 
 
6d06cb9
 
 
eb136bc
6d06cb9
 
eb136bc
 
 
6d06cb9
 
 
 
 
 
 
 
 
eb136bc
6044374
eb136bc
6044374
eb136bc
 
 
 
6d06cb9
 
 
 
 
 
 
 
 
eb136bc
6044374
eb136bc
6044374
 
 
 
 
 
eb136bc
6044374
 
eb136bc
6044374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb136bc
 
 
 
 
c873531
eb136bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from transformers import T5ForConditionalGeneration, T5TokenizerFast
from torch.utils.data import DataLoader
import streamlit as st
import pandas as pd
import torch
import os


# Let us define the main page
st.markdown("Translation page 🔠")

# Dropdown for the translation type
translation_type = st.sidebar.selectbox("Translation Type", options=["French ➡️ Wolof", "Wolof ➡️ French"])

# define a dictionary of versions
models = {
    "Version ✌️": {
        "French ➡️ Wolof": {
            "checkpoints": "wolof-translate/wolof_translate/checkpoints/t5_small_custom_train_results_fw_v4",
            "tokenizer": "wolof-translate/wolof_translate/tokenizers/t5_tokenizers/tokenizer_v4.json",
            "max_len": None
        }
    },
    "Version ☝️": {
        "French ➡️ Wolof": {
            "checkpoints": "wolof-translate/wolof_translate/checkpoints/t5_small_custom_train_results_fw_v3",
            "tokenizer": "wolof-translate/wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json",
            "max_len": 51
            },
        "Wolof ➡️ French": {
            "checkpoints": "wolof-translate/wolof_translate/checkpoints/t5_small_custom_train_results_wf_v3",
            "tokenizer": "wolof-translate/wolof_translate/trokenizers/t5_tokenizers/tokenizer_v3.json",
            "max_len": 51
        }
    }
}

# add special characters from Wolof
sp_wolof_chars = pd.read_csv('wolof-translate/wolof_translate/data/wolof_writing/wolof_special_chars.csv')

# add definitions
sp_wolof_words = pd.read_csv('wolof-translate/wolof_translate/data/wolof_writing/definitions.csv')

# let us add a callback functions to change the input text
def add_symbol_to_text():
    
    st.session_state.input_text += st.session_state.symbol

def add_word_to_text():
    
    word = st.session_state.word.split('/')[0].strip()
    
    st.session_state.input_text += word

# Dropdown for introducing wolof special characters
if translation_type == "Wolof ➡️ French":
    
    symbol = st.sidebar.selectbox("Wolof characters", key="symbol", options = sp_wolof_chars['wolof_special_chars'], on_change=add_symbol_to_text)
    
    word = st.sidebar.selectbox("Wolof words/Definitions", key="word", options = [sp_wolof_words.loc[i, 'wolof']+" / "+sp_wolof_words.loc[i, 'french'] for i in range(sp_wolof_words.shape[0])], on_change=add_word_to_text)

# Dropdown for the model version
version = st.sidebar.selectbox("Model version", options=["Version ☝️", "Version ✌️"])

# Recuperate the number of sentences to provide
temperature = st.sidebar.slider("How randomly need you the translated sentences to be from 0% to 100%", min_value = 0,
          max_value = 100)


# make the process
try:
    
    # recuperate the max length
    max_len = models[version][translation_type]['max_len']
    
    # let us get the best model
    @st.cache_resource
    def get_modelfw_v3():
        
        # recuperate checkpoints
        checkpoints = torch.load(os.path.join('wolof-translate/wolof_translate/checkpoints/t5_small_custom_train_results_fw_v3', "best_checkpoints.pth"), map_location=torch.device('cpu'))
        
        # recuperate the tokenizer
        tokenizer_file = "wolof-translate/wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json"
        
        # initialize the tokenizer
        tokenizer = T5TokenizerFast(tokenizer_file=tokenizer_file)
        
        model = T5ForConditionalGeneration.from_pretrained('t5-small')
        
        # resize the token embeddings
        model.resize_token_embeddings(len(tokenizer))
        
        model.load_state_dict(checkpoints['model_state_dict'])
        
        return model, tokenizer
    
    @st.cache_resource
    def get_modelwf_v3():
        
        # recuperate checkpoints
        checkpoints = torch.load(os.path.join('wolof-translate/wolof_translate/checkpoints/t5_small_custom_train_results_wf_v3', "best_checkpoints.pth"), map_location=torch.device('cpu'))
        
        # recuperate the tokenizer
        tokenizer_file = "wolof-translate/wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json"
        
        # initialize the tokenizer
        tokenizer = T5TokenizerFast(tokenizer_file=tokenizer_file)
        
        model = T5ForConditionalGeneration.from_pretrained('t5-small')
        
        # resize the token embeddings
        model.resize_token_embeddings(len(tokenizer))
        
        model.load_state_dict(checkpoints['model_state_dict'])
        
        return model, tokenizer

    if version == "Version ☝️":
        
        if translation_type == "French ➡️ Wolof":
            
            model, tokenizer = get_modelfw_v3()
        
        elif translation_type == "Wolof ➡️ French":
            
            model, tokenizer = get_modelwf_v3() 

    # set the model to eval mode
    _ = model.eval()
    
    language = "Wolof" if translation_type == "French ➡️ Wolof" else "French"
    
    # Add a title
    st.header(f"Translate French sentences to {language} 👌")
    
    # Recuperate two columns
    left, right = st.columns(2)

    if translation_type == "French ➡️ Wolof":

        # recuperate sentences
        left.subheader('Give me some sentences in French: ')
    
    else:

        # recuperate sentences
        left.subheader('Give me some sentences in Wolof: ')

    # for i in range(number):
        
    left.text_input(f"- Sentence", key = f"input_text")

    # run model inference on all test data
    original_translations, predicted_translations, original_texts, scores = [], [], [], {}

    if translation_type == "French ➡️ Wolof":
        
        # print a sentence recuperated from the session
        right.subheader("Translation to Wolof:")
    
    else:
        
        # print a sentence recuperated from the session
        right.subheader("Translation to French:")

    # for i in range(number):
        
    sentence = st.session_state[f"input_text"] + tokenizer.eos_token
    
    if not sentence == tokenizer.eos_token:
    
        # Let us encode the sentences
        encoding = tokenizer([sentence], return_tensors='pt', max_length=max_len, padding='max_length', truncation=True)
        
        # Let us recuperate the input ids
        input_ids = encoding.input_ids
        
        # Let us recuperate the mask
        mask = encoding.attention_mask
        
        # Let us recuperate the pad token id
        pad_token_id = tokenizer.pad_token_id
        
        # perform prediction
        predictions = model.generate(input_ids, do_sample = False, top_k = 50, max_length = max_len, top_p = 0.90,
                                        temperature = temperature/100, num_return_sequences = 0, attention_mask = mask, pad_token_id = pad_token_id)
        
        # decode the predictions
        predicted_sentence = tokenizer.batch_decode(predictions, skip_special_tokens = True)
        
        # provide the prediction
        right.write(f"Translation: {predicted_sentence[0]}")
        
    else:
        
        # provide the prediction
        right.write(f"Translation: ")
    
except Exception as e:
    
    st.warning("The chosen model is not available yet !", icon = "⚠️")
    
    st.write(e)