Spaces:
Sleeping
Sleeping
import pickle | |
import numpy as np | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from typing import List | |
import math | |
class InputData(BaseModel): | |
array: List[List[int]] | |
app = FastAPI() | |
# Cargar el modelo SOM | |
def load_model(): | |
with open('som.pkl', 'rb') as fid: | |
som = pickle.load(fid) | |
return som | |
def sobel(I): | |
m, n = I.shape | |
Gx = np.zeros([m, n], np.float32) | |
Gy = np.zeros([m, n], np.float32) | |
gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) | |
gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]) | |
for j in range(1, m-1): | |
for i in range(1, n-1): | |
Gx[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gx) | |
Gy[j, i] = np.sum(I[j-1:j+2, i-1:i+2] * gy) | |
return Gx, Gy | |
def medfilt2(G, d=3): | |
m, n = G.shape | |
temp = np.pad(G, pad_width=d//2, mode='constant', constant_values=0) | |
salida = np.zeros([m, n], np.float32) | |
for i in range(m): | |
for j in range(n): | |
A = temp[i:i+d, j:j+d].flatten() | |
salida[i, j] = np.median(A) | |
return salida | |
def orientacion(patron, w): | |
Gx, Gy = sobel(patron) | |
Gx = medfilt2(Gx) | |
Gy = medfilt2(Gy) | |
m, n = Gx.shape | |
mOrientaciones = np.zeros([m//w, n//w], np.float32) | |
for i in range(m//w): | |
for j in range(n//w): | |
YY = np.sum(2 * Gx[i*w:(i+1)*w, j*w:(j+1)*w] * Gy[i*w:(i+1)*w, j*w:(j+1)*w]) | |
XX = np.sum(Gx[i*w:(i+1)*w, j*w:(j+1)*w]**2 - Gy[i*w:(i+1)*w, j*w:(j+1)*w]**2) | |
mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi) | |
return mOrientaciones | |
def representativo(imarray): | |
imarray = np.squeeze(imarray) | |
m, n = imarray.shape | |
patron = imarray[1:m-1, 1:n-1] | |
EE = orientacion(patron, 14) | |
return np.asarray(EE).reshape(-1) | |
som = load_model() | |
MM = np.array([ | |
[ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.], | |
[ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.], | |
[-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.], | |
[-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.], | |
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.], | |
[ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.] | |
]) | |
async def predict(data: InputData): | |
try: | |
print(data.array) | |
input_data = np.array(data.array).reshape(256, 256) | |
representative_data = representativo(input_data) | |
representative_data = representative_data.reshape(1, -1) | |
w = som.winner(representative_data) | |
prediction = MM[w] | |
return {"prediction": prediction.tolist()} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |