Overglitch commited on
Commit
a345119
·
verified ·
1 Parent(s): 06a5287

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -36
app.py CHANGED
@@ -5,41 +5,6 @@ import pickle
5
  from io import BytesIO
6
  import math
7
 
8
- app = FastAPI()
9
-
10
- som = load_model()
11
-
12
- MM = np.array([
13
- [ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.],
14
- [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
15
- [-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.],
16
- [ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.],
17
- [-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.],
18
- [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
19
- [ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.],
20
- [-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.],
21
- [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
22
- [ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.]
23
- ])
24
-
25
- @app.post("/predict/")
26
- async def predict_fingerprint_api(file: UploadFile = File(...)):
27
- try:
28
- contents = await file.read()
29
- image = Image.open(BytesIO(contents)).convert('L')
30
- image = np.asarray(image)
31
- print(f"ARRAY{image.size}:\n\n\n{image}")
32
- image = np.array(image.array).reshape(256, 256, 1)
33
- representative_data = representativo(image)
34
- representative_data = representative_data.reshape(1, -1)
35
-
36
- w = som.winner(representative_data)
37
- prediction = MM[w]
38
-
39
- return {"prediction": prediction}
40
- except Exception as e:
41
- raise HTTPException(status_code=500, detail=str(e))
42
-
43
  def load_model():
44
  with open('som.pkl', 'rb') as fid:
45
  som = pickle.load(fid)
@@ -79,4 +44,40 @@ def representativo(imarray):
79
  m, n = imarray.shape
80
  patron = imarray[1:m-1, 1:n-1]
81
  EE = orientacion(patron, 14)
82
- return np.asarray(EE).reshape(-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  from io import BytesIO
6
  import math
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  def load_model():
9
  with open('som.pkl', 'rb') as fid:
10
  som = pickle.load(fid)
 
44
  m, n = imarray.shape
45
  patron = imarray[1:m-1, 1:n-1]
46
  EE = orientacion(patron, 14)
47
+ return np.asarray(EE).reshape(-1)
48
+
49
+ app = FastAPI()
50
+
51
+ som = load_model()
52
+
53
+ MM = np.array([
54
+ [ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.],
55
+ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
56
+ [-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.],
57
+ [ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.],
58
+ [-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.],
59
+ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
60
+ [ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.],
61
+ [-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.],
62
+ [-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
63
+ [ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.]
64
+ ])
65
+
66
+ @app.post("/predict/")
67
+ async def predict_fingerprint_api(file: UploadFile = File(...)):
68
+ try:
69
+ contents = await file.read()
70
+ image = Image.open(BytesIO(contents)).convert('L')
71
+ image = np.asarray(image)
72
+ print(f"ARRAY{image.size}:\n\n\n{image}")
73
+ image = np.array(image.array).reshape(256, 256, 1)
74
+ representative_data = representativo(image)
75
+ representative_data = representative_data.reshape(1, -1)
76
+
77
+ w = som.winner(representative_data)
78
+ prediction = MM[w]
79
+
80
+ return {"prediction": prediction}
81
+ except Exception as e:
82
+ raise HTTPException(status_code=500, detail=str(e))
83
+