Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,41 +5,6 @@ import pickle
|
|
5 |
from io import BytesIO
|
6 |
import math
|
7 |
|
8 |
-
app = FastAPI()
|
9 |
-
|
10 |
-
som = load_model()
|
11 |
-
|
12 |
-
MM = np.array([
|
13 |
-
[ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.],
|
14 |
-
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
15 |
-
[-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.],
|
16 |
-
[ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.],
|
17 |
-
[-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.],
|
18 |
-
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
19 |
-
[ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.],
|
20 |
-
[-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.],
|
21 |
-
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
22 |
-
[ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.]
|
23 |
-
])
|
24 |
-
|
25 |
-
@app.post("/predict/")
|
26 |
-
async def predict_fingerprint_api(file: UploadFile = File(...)):
|
27 |
-
try:
|
28 |
-
contents = await file.read()
|
29 |
-
image = Image.open(BytesIO(contents)).convert('L')
|
30 |
-
image = np.asarray(image)
|
31 |
-
print(f"ARRAY{image.size}:\n\n\n{image}")
|
32 |
-
image = np.array(image.array).reshape(256, 256, 1)
|
33 |
-
representative_data = representativo(image)
|
34 |
-
representative_data = representative_data.reshape(1, -1)
|
35 |
-
|
36 |
-
w = som.winner(representative_data)
|
37 |
-
prediction = MM[w]
|
38 |
-
|
39 |
-
return {"prediction": prediction}
|
40 |
-
except Exception as e:
|
41 |
-
raise HTTPException(status_code=500, detail=str(e))
|
42 |
-
|
43 |
def load_model():
|
44 |
with open('som.pkl', 'rb') as fid:
|
45 |
som = pickle.load(fid)
|
@@ -79,4 +44,40 @@ def representativo(imarray):
|
|
79 |
m, n = imarray.shape
|
80 |
patron = imarray[1:m-1, 1:n-1]
|
81 |
EE = orientacion(patron, 14)
|
82 |
-
return np.asarray(EE).reshape(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from io import BytesIO
|
6 |
import math
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def load_model():
|
9 |
with open('som.pkl', 'rb') as fid:
|
10 |
som = pickle.load(fid)
|
|
|
44 |
m, n = imarray.shape
|
45 |
patron = imarray[1:m-1, 1:n-1]
|
46 |
EE = orientacion(patron, 14)
|
47 |
+
return np.asarray(EE).reshape(-1)
|
48 |
+
|
49 |
+
app = FastAPI()
|
50 |
+
|
51 |
+
som = load_model()
|
52 |
+
|
53 |
+
MM = np.array([
|
54 |
+
[ 0., -1., -1., -1., -1., 2., -1., -1., -1., 3.],
|
55 |
+
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
56 |
+
[-1., -1., -1., 1., -1., -1., -1., -1., -1., -1.],
|
57 |
+
[ 1., -1., -1., -1., -1., -1., -1., -1., -1., 0.],
|
58 |
+
[-1., -1., -1., -1., 1., -1., -1., -1., -1., -1.],
|
59 |
+
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
60 |
+
[ 3., -1., -1., -1., -1., -1., -1., -1., -1., 3.],
|
61 |
+
[-1., -1., -1., 0., -1., -1., 3., -1., -1., -1.],
|
62 |
+
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
63 |
+
[ 2., -1., -1., -1., 1., -1., -1., -1., -1., 2.]
|
64 |
+
])
|
65 |
+
|
66 |
+
@app.post("/predict/")
|
67 |
+
async def predict_fingerprint_api(file: UploadFile = File(...)):
|
68 |
+
try:
|
69 |
+
contents = await file.read()
|
70 |
+
image = Image.open(BytesIO(contents)).convert('L')
|
71 |
+
image = np.asarray(image)
|
72 |
+
print(f"ARRAY{image.size}:\n\n\n{image}")
|
73 |
+
image = np.array(image.array).reshape(256, 256, 1)
|
74 |
+
representative_data = representativo(image)
|
75 |
+
representative_data = representative_data.reshape(1, -1)
|
76 |
+
|
77 |
+
w = som.winner(representative_data)
|
78 |
+
prediction = MM[w]
|
79 |
+
|
80 |
+
return {"prediction": prediction}
|
81 |
+
except Exception as e:
|
82 |
+
raise HTTPException(status_code=500, detail=str(e))
|
83 |
+
|