Spaces:
Sleeping
Sleeping
File size: 6,382 Bytes
56da2e5 d3a3235 56da2e5 d3a3235 56da2e5 54ccd94 56da2e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 03e00e5 2f2f4c9 56da2e5 f3fc1b2 56da2e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import re
import shutil
import time
from pathlib import Path
from datetime import date
from cleantext import clean
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from spellchecker import SpellChecker
import nltk
nltk.data.path.append('/home/user/nltk_data')
nltk.download('punkt')
nltk.download('punkt_tab')
class Preprocessor:
"""Clase para preprocesar texto, realizar limpieza y correcciones."""
def __init__(self):
self.spell_checker = SpellChecker()
@staticmethod
def clean_text(text: str, lower: bool = False, lang: str = "en") -> str:
"""
Limpia texto de ruido y caracteres no deseados.
"""
return clean(
text,
fix_unicode=True,
to_ascii=True,
lower=lower,
no_line_breaks=True,
no_urls=True,
no_emails=True,
no_phone_numbers=True,
no_numbers=False,
no_digits=False,
no_currency_symbols=True,
no_punct=False,
lang=lang,
)
@staticmethod
def correct_spacing(text: str, exceptions=None) -> str:
"""
Corrige espacios alrededor de signos de puntuación y excepciones.
"""
if exceptions is None:
exceptions = ["e.g.", "i.e.", "etc.", "cf.", "vs.", "p."]
text = re.sub(r"\s+", " ", text)
text = re.sub(r'\s([?.!"](?:\s|$))', r"\1", text)
text = re.sub(r"\s,", r",", text)
for exception in exceptions:
text = text.replace(" ".join(exception.split()), exception)
return text.strip()
@staticmethod
def split_into_sentences(text: str) -> list:
"""
Divide texto en oraciones usando NLTK.
"""
from nltk.tokenize import sent_tokenize
return sent_tokenize(text)
def correct_spelling(self, text: str) -> str:
"""
Corrige la ortografía del texto dado.
"""
words = text.split()
corrected_words = [self.spell_checker.correction(word) for word in words]
return " ".join(corrected_words)
def preprocess_text(self, text: str) -> str:
"""
Limpia, corrige ortografía y ajusta espacios en texto.
"""
cleaned = self.clean_text(text)
corrected = self.correct_spelling(cleaned)
return self.correct_spacing(corrected)
def clean_sentences(self, sentences: list) -> list:
"""
Limpia cada oración en una lista de oraciones.
"""
return [self.clean_text(sentence) for sentence in sentences]
class PDFProcessor:
"""Clase para procesar archivos PDF y convertirlos a texto."""
def __init__(self, max_pages=20):
self.ocr_model = ocr_predictor(pretrained=True)
self.max_pages = max_pages
def pdf_to_text(self, pdf_path):
"""
Convierte un archivo PDF a texto usando OCR.
Si el archivo no es válido o está corrupto, maneja la excepción.
"""
# Asegurarse de que el archivo está disponible temporalmente
temp_dir = Path("temp")
temp_dir.mkdir(exist_ok=True)
# Manejar el archivo temporalmente
temp_file_path = temp_dir / Path(pdf_path).name
if not temp_file_path.exists():
shutil.copy(pdf_path, temp_file_path)
try:
# 1) Cargar el PDF
doc = DocumentFile.from_pdf(temp_file_path)
# Verificar si el documento tiene páginas válidas
if not hasattr(doc, "pages") or not doc.pages:
raise ValueError("El archivo no contiene páginas procesables.")
# 2) Limitar el número de páginas si es necesario
if len(doc.pages) > self.max_pages:
doc.pages = doc.pages[:self.max_pages]
# 3) Aplicar el modelo OCR al documento
ocr_result = self.ocr_model(doc)
# 4) Extraer texto de cada bloque
text_pages = []
for page in ocr_result.pages:
for block in page.blocks:
text_pages.append(block.text)
# 5) Unir todo el texto y devolverlo
return "\n".join(text_pages)
except ValueError as ve:
print(f"Error al procesar el archivo PDF: {ve}")
return "El archivo PDF no es válido o está corrupto."
except Exception as e:
print(f"Error inesperado al procesar el PDF: {e}")
return "Ocurrió un error inesperado al procesar el archivo."
finally:
# Limpiar el archivo temporal después del procesamiento
if temp_file_path.exists():
temp_file_path.unlink()
@staticmethod
def clear_temp_directory():
"""Limpia todos los archivos en el directorio temporal."""
temp_dir = Path("temp")
if temp_dir.exists():
for file in temp_dir.iterdir():
if file.is_file():
file.unlink()
class FileHandler:
"""Clase para manejar archivos temporales y limpieza."""
@staticmethod
def save_temp_file(file_obj, temp_dir: Path = None) -> str:
"""
Guarda un archivo temporalmente y retorna su ruta.
"""
if temp_dir is None:
temp_dir = Path("temp")
temp_dir.mkdir(exist_ok=True)
file_path = Path(file_obj.name)
temp_path = temp_dir / file_path.name
with open(temp_path, "wb") as f:
f.write(file_obj.read())
return str(temp_path.resolve())
@staticmethod
def clear_temp_files(directory="temp", name_contains="RESULT_"):
"""
Limpia archivos temporales en el directorio especificado.
"""
temp_dir = Path(directory)
if not temp_dir.exists():
return
for file in temp_dir.iterdir():
if file.is_file() and name_contains in file.name:
file.unlink()
@staticmethod
def move_to_completed(from_dir: Path, filename: str, completed_dir="completed"):
"""
Mueve un archivo procesado a la carpeta 'completed'.
"""
completed_path = from_dir / completed_dir
completed_path.mkdir(exist_ok=True)
shutil.move(from_dir / filename, completed_path / filename)
|