Spaces:
Sleeping
Sleeping
""".. _goal_function: | |
GoalFunction Class | |
=========================================================== | |
""" | |
from abc import ABC, abstractmethod | |
import lru | |
import numpy as np | |
import torch | |
from textattack.goal_function_results.goal_function_result import ( | |
GoalFunctionResultStatus, | |
) | |
from textattack.shared import validators | |
from textattack.shared.utils import ReprMixin | |
class GoalFunction(ReprMixin, ABC): | |
"""Evaluates how well a perturbed attacked_text object is achieving a | |
specified goal. | |
Args: | |
model_wrapper (:class:`~textattack.models.wrappers.ModelWrapper`): | |
The victim model to attack. | |
maximizable(:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether the goal function is maximizable, as opposed to a boolean result of success or failure. | |
query_budget (:obj:`float`, `optional`, defaults to :obj:`float("in")`): | |
The maximum number of model queries allowed. | |
model_cache_size (:obj:`int`, `optional`, defaults to :obj:`2**20`): | |
The maximum number of items to keep in the model results cache at once. | |
""" | |
def __init__( | |
self, | |
model_wrapper, | |
maximizable=False, | |
use_cache=True, | |
query_budget=float("inf"), | |
model_batch_size=32, | |
model_cache_size=2**20, | |
): | |
validators.validate_model_goal_function_compatibility( | |
self.__class__, model_wrapper.model.__class__ | |
) | |
self.model = model_wrapper | |
self.maximizable = maximizable | |
self.use_cache = use_cache | |
self.query_budget = query_budget | |
self.batch_size = model_batch_size | |
if self.use_cache: | |
self._call_model_cache = lru.LRU(model_cache_size) | |
else: | |
self._call_model_cache = None | |
def clear_cache(self): | |
if self.use_cache: | |
self._call_model_cache.clear() | |
def init_attack_example(self, attacked_text, ground_truth_output): | |
"""Called before attacking ``attacked_text`` to 'reset' the goal | |
function and set properties for this example.""" | |
self.initial_attacked_text = attacked_text | |
self.ground_truth_output = ground_truth_output | |
self.num_queries = 0 | |
result, _ = self.get_result(attacked_text, check_skip=True) | |
return result, _ | |
def get_output(self, attacked_text): | |
"""Returns output for display based on the result of calling the | |
model.""" | |
return self._get_displayed_output(self._call_model([attacked_text])[0]) | |
def get_result(self, attacked_text, **kwargs): | |
"""A helper method that queries ``self.get_results`` with a single | |
``AttackedText`` object.""" | |
results, search_over = self.get_results([attacked_text], **kwargs) | |
result = results[0] if len(results) else None | |
return result, search_over | |
def get_results(self, attacked_text_list, check_skip=False): | |
"""For each attacked_text object in attacked_text_list, returns a | |
result consisting of whether or not the goal has been achieved, the | |
output for display purposes, and a score. | |
Additionally returns whether the search is over due to the query | |
budget. | |
""" | |
results = [] | |
if self.query_budget < float("inf"): | |
queries_left = self.query_budget - self.num_queries | |
attacked_text_list = attacked_text_list[:queries_left] | |
self.num_queries += len(attacked_text_list) | |
model_outputs = self._call_model(attacked_text_list) | |
for attacked_text, raw_output in zip(attacked_text_list, model_outputs): | |
displayed_output = self._get_displayed_output(raw_output) | |
goal_status = self._get_goal_status( | |
raw_output, attacked_text, check_skip=check_skip | |
) | |
goal_function_score = self._get_score(raw_output, attacked_text) | |
results.append( | |
self._goal_function_result_type()( | |
attacked_text, | |
raw_output, | |
displayed_output, | |
goal_status, | |
goal_function_score, | |
self.num_queries, | |
self.ground_truth_output, | |
) | |
) | |
return results, self.num_queries == self.query_budget | |
def _get_goal_status(self, model_output, attacked_text, check_skip=False): | |
should_skip = check_skip and self._should_skip(model_output, attacked_text) | |
if should_skip: | |
return GoalFunctionResultStatus.SKIPPED | |
if self.maximizable: | |
return GoalFunctionResultStatus.MAXIMIZING | |
if self._is_goal_complete(model_output, attacked_text): | |
return GoalFunctionResultStatus.SUCCEEDED | |
return GoalFunctionResultStatus.SEARCHING | |
def _is_goal_complete(self, model_output, attacked_text): | |
raise NotImplementedError() | |
def _should_skip(self, model_output, attacked_text): | |
return self._is_goal_complete(model_output, attacked_text) | |
def _get_score(self, model_output, attacked_text): | |
raise NotImplementedError() | |
def _get_displayed_output(self, raw_output): | |
return raw_output | |
def _goal_function_result_type(self): | |
"""Returns the class of this goal function's results.""" | |
raise NotImplementedError() | |
def _process_model_outputs(self, inputs, outputs): | |
"""Processes and validates a list of model outputs. | |
This is a task-dependent operation. For example, classification | |
outputs need to make sure they have a softmax applied. | |
""" | |
raise NotImplementedError() | |
def _call_model_uncached(self, attacked_text_list): | |
"""Queries model and returns outputs for a list of AttackedText | |
objects.""" | |
if not len(attacked_text_list): | |
return [] | |
inputs = [at.tokenizer_input for at in attacked_text_list] | |
outputs = [] | |
i = 0 | |
while i < len(inputs): | |
batch = inputs[i : i + self.batch_size] | |
batch_preds = self.model(batch) | |
# Some seq-to-seq models will return a single string as a prediction | |
# for a single-string list. Wrap these in a list. | |
if isinstance(batch_preds, str): | |
batch_preds = [batch_preds] | |
# Get PyTorch tensors off of other devices. | |
if isinstance(batch_preds, torch.Tensor): | |
batch_preds = batch_preds.cpu() | |
if isinstance(batch_preds, list): | |
outputs.extend(batch_preds) | |
elif isinstance(batch_preds, np.ndarray): | |
outputs.append(torch.tensor(batch_preds)) | |
else: | |
outputs.append(batch_preds) | |
i += self.batch_size | |
if isinstance(outputs[0], torch.Tensor): | |
outputs = torch.cat(outputs, dim=0) | |
assert len(inputs) == len( | |
outputs | |
), f"Got {len(outputs)} outputs for {len(inputs)} inputs" | |
return self._process_model_outputs(attacked_text_list, outputs) | |
def _call_model(self, attacked_text_list): | |
"""Gets predictions for a list of ``AttackedText`` objects. | |
Gets prediction from cache if possible. If prediction is not in | |
the cache, queries model and stores prediction in cache. | |
""" | |
if not self.use_cache: | |
return self._call_model_uncached(attacked_text_list) | |
else: | |
uncached_list = [] | |
for text in attacked_text_list: | |
if text in self._call_model_cache: | |
# Re-write value in cache. This moves the key to the top of the | |
# LRU cache and prevents the unlikely event that the text | |
# is overwritten when we store the inputs from `uncached_list`. | |
self._call_model_cache[text] = self._call_model_cache[text] | |
else: | |
uncached_list.append(text) | |
uncached_list = [ | |
text | |
for text in attacked_text_list | |
if text not in self._call_model_cache | |
] | |
outputs = self._call_model_uncached(uncached_list) | |
for text, output in zip(uncached_list, outputs): | |
self._call_model_cache[text] = output | |
all_outputs = [self._call_model_cache[text] for text in attacked_text_list] | |
return all_outputs | |
def extra_repr_keys(self): | |
attrs = [] | |
if self.query_budget < float("inf"): | |
attrs.append("query_budget") | |
if self.maximizable: | |
attrs.append("maximizable") | |
return attrs | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
if self.use_cache: | |
state["_call_model_cache"] = self._call_model_cache.get_size() | |
return state | |
def __setstate__(self, state): | |
self.__dict__ = state | |
if self.use_cache: | |
self._call_model_cache = lru.LRU(state["_call_model_cache"]) | |