PFEemp2024's picture
solving GPU error for previous version
4a1df2e
"""
ModelArgs Class
===============
"""
from dataclasses import dataclass
import json
import os
import transformers
import textattack
from textattack.shared.utils import ARGS_SPLIT_TOKEN, load_module_from_file
HUGGINGFACE_MODELS = {
#
# bert-base-uncased
#
"bert-base-uncased": "bert-base-uncased",
"bert-base-uncased-ag-news": "textattack/bert-base-uncased-ag-news",
"bert-base-uncased-cola": "textattack/bert-base-uncased-CoLA",
"bert-base-uncased-imdb": "textattack/bert-base-uncased-imdb",
"bert-base-uncased-mnli": "textattack/bert-base-uncased-MNLI",
"bert-base-uncased-mrpc": "textattack/bert-base-uncased-MRPC",
"bert-base-uncased-qnli": "textattack/bert-base-uncased-QNLI",
"bert-base-uncased-qqp": "textattack/bert-base-uncased-QQP",
"bert-base-uncased-rte": "textattack/bert-base-uncased-RTE",
"bert-base-uncased-sst2": "textattack/bert-base-uncased-SST-2",
"bert-base-uncased-stsb": "textattack/bert-base-uncased-STS-B",
"bert-base-uncased-wnli": "textattack/bert-base-uncased-WNLI",
"bert-base-uncased-mr": "textattack/bert-base-uncased-rotten-tomatoes",
"bert-base-uncased-snli": "textattack/bert-base-uncased-snli",
"bert-base-uncased-yelp": "textattack/bert-base-uncased-yelp-polarity",
#
# distilbert-base-cased
#
"distilbert-base-uncased": "distilbert-base-uncased",
"distilbert-base-cased-cola": "textattack/distilbert-base-cased-CoLA",
"distilbert-base-cased-mrpc": "textattack/distilbert-base-cased-MRPC",
"distilbert-base-cased-qqp": "textattack/distilbert-base-cased-QQP",
"distilbert-base-cased-snli": "textattack/distilbert-base-cased-snli",
"distilbert-base-cased-sst2": "textattack/distilbert-base-cased-SST-2",
"distilbert-base-cased-stsb": "textattack/distilbert-base-cased-STS-B",
"distilbert-base-uncased-ag-news": "textattack/distilbert-base-uncased-ag-news",
"distilbert-base-uncased-cola": "textattack/distilbert-base-cased-CoLA",
"distilbert-base-uncased-imdb": "textattack/distilbert-base-uncased-imdb",
"distilbert-base-uncased-mnli": "textattack/distilbert-base-uncased-MNLI",
"distilbert-base-uncased-mr": "textattack/distilbert-base-uncased-rotten-tomatoes",
"distilbert-base-uncased-mrpc": "textattack/distilbert-base-uncased-MRPC",
"distilbert-base-uncased-qnli": "textattack/distilbert-base-uncased-QNLI",
"distilbert-base-uncased-rte": "textattack/distilbert-base-uncased-RTE",
"distilbert-base-uncased-wnli": "textattack/distilbert-base-uncased-WNLI",
#
# roberta-base (RoBERTa is cased by default)
#
"roberta-base": "roberta-base",
"roberta-base-ag-news": "textattack/roberta-base-ag-news",
"roberta-base-cola": "textattack/roberta-base-CoLA",
"roberta-base-imdb": "textattack/roberta-base-imdb",
"roberta-base-mr": "textattack/roberta-base-rotten-tomatoes",
"roberta-base-mrpc": "textattack/roberta-base-MRPC",
"roberta-base-qnli": "textattack/roberta-base-QNLI",
"roberta-base-rte": "textattack/roberta-base-RTE",
"roberta-base-sst2": "textattack/roberta-base-SST-2",
"roberta-base-stsb": "textattack/roberta-base-STS-B",
"roberta-base-wnli": "textattack/roberta-base-WNLI",
#
# albert-base-v2 (ALBERT is cased by default)
#
"albert-base-v2": "albert-base-v2",
"albert-base-v2-ag-news": "textattack/albert-base-v2-ag-news",
"albert-base-v2-cola": "textattack/albert-base-v2-CoLA",
"albert-base-v2-imdb": "textattack/albert-base-v2-imdb",
"albert-base-v2-mr": "textattack/albert-base-v2-rotten-tomatoes",
"albert-base-v2-rte": "textattack/albert-base-v2-RTE",
"albert-base-v2-qqp": "textattack/albert-base-v2-QQP",
"albert-base-v2-snli": "textattack/albert-base-v2-snli",
"albert-base-v2-sst2": "textattack/albert-base-v2-SST-2",
"albert-base-v2-stsb": "textattack/albert-base-v2-STS-B",
"albert-base-v2-wnli": "textattack/albert-base-v2-WNLI",
"albert-base-v2-yelp": "textattack/albert-base-v2-yelp-polarity",
#
# xlnet-base-cased
#
"xlnet-base-cased": "xlnet-base-cased",
"xlnet-base-cased-cola": "textattack/xlnet-base-cased-CoLA",
"xlnet-base-cased-imdb": "textattack/xlnet-base-cased-imdb",
"xlnet-base-cased-mr": "textattack/xlnet-base-cased-rotten-tomatoes",
"xlnet-base-cased-mrpc": "textattack/xlnet-base-cased-MRPC",
"xlnet-base-cased-rte": "textattack/xlnet-base-cased-RTE",
"xlnet-base-cased-stsb": "textattack/xlnet-base-cased-STS-B",
"xlnet-base-cased-wnli": "textattack/xlnet-base-cased-WNLI",
}
#
# Models hosted by textattack.
# `models` vs `models_v2`: `models_v2` is simply a new dir in S3 that contains models' `config.json`.
# Fixes issue https://github.com/QData/TextAttack/issues/485
# Model parameters has not changed.
#
TEXTATTACK_MODELS = {
#
# LSTMs
#
"lstm-ag-news": "models_v2/classification/lstm/ag-news",
"lstm-imdb": "models_v2/classification/lstm/imdb",
"lstm-mr": "models_v2/classification/lstm/mr",
"lstm-sst2": "models_v2/classification/lstm/sst2",
"lstm-yelp": "models_v2/classification/lstm/yelp",
#
# CNNs
#
"cnn-ag-news": "models_v2/classification/cnn/ag-news",
"cnn-imdb": "models_v2/classification/cnn/imdb",
"cnn-mr": "models_v2/classification/cnn/rotten-tomatoes",
"cnn-sst2": "models_v2/classification/cnn/sst",
"cnn-yelp": "models_v2/classification/cnn/yelp",
#
# T5 for translation
#
"t5-en-de": "english_to_german",
"t5-en-fr": "english_to_french",
"t5-en-ro": "english_to_romanian",
#
# T5 for summarization
#
"t5-summarization": "summarization",
}
@dataclass
class ModelArgs:
"""Arguments for loading base/pretrained or trained models."""
model: str = None
model_from_file: str = None
model_from_huggingface: str = None
@classmethod
def _add_parser_args(cls, parser):
"""Adds model-related arguments to an argparser."""
model_group = parser.add_mutually_exclusive_group()
model_names = list(HUGGINGFACE_MODELS.keys()) + list(TEXTATTACK_MODELS.keys())
model_group.add_argument(
"--model",
type=str,
required=False,
default=None,
help="Name of or path to a pre-trained TextAttack model to load. Choices: "
+ str(model_names),
)
model_group.add_argument(
"--model-from-file",
type=str,
required=False,
help="File of model and tokenizer to import.",
)
model_group.add_argument(
"--model-from-huggingface",
type=str,
required=False,
help="Name of or path of pre-trained HuggingFace model to load.",
)
return parser
@classmethod
def _create_model_from_args(cls, args):
"""Given ``ModelArgs``, return specified
``textattack.models.wrappers.ModelWrapper`` object."""
assert isinstance(
args, cls
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`."
if args.model_from_file:
# Support loading the model from a .py file where a model wrapper
# is instantiated.
colored_model_name = textattack.shared.utils.color_text(
args.model_from_file, color="blue", method="ansi"
)
textattack.shared.logger.info(
f"Loading model and tokenizer from file: {colored_model_name}"
)
if ARGS_SPLIT_TOKEN in args.model_from_file:
model_file, model_name = args.model_from_file.split(ARGS_SPLIT_TOKEN)
else:
_, model_name = args.model_from_file, "model"
try:
model_module = load_module_from_file(args.model_from_file)
except Exception:
raise ValueError(f"Failed to import file {args.model_from_file}.")
try:
model = getattr(model_module, model_name)
except AttributeError:
raise AttributeError(
f"Variable `{model_name}` not found in module {args.model_from_file}."
)
if not isinstance(model, textattack.models.wrappers.ModelWrapper):
raise TypeError(
f"Variable `{model_name}` must be of type "
f"``textattack.models.ModelWrapper``, got type {type(model)}."
)
elif (args.model in HUGGINGFACE_MODELS) or args.model_from_huggingface:
# Support loading models automatically from the HuggingFace model hub.
model_name = (
HUGGINGFACE_MODELS[args.model]
if (args.model in HUGGINGFACE_MODELS)
else args.model_from_huggingface
)
colored_model_name = textattack.shared.utils.color_text(
model_name, color="blue", method="ansi"
)
textattack.shared.logger.info(
f"Loading pre-trained model from HuggingFace model repository: {colored_model_name}"
)
model = transformers.AutoModelForSequenceClassification.from_pretrained(
model_name
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name, use_fast=True
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
elif args.model in TEXTATTACK_MODELS:
# Support loading TextAttack pre-trained models via just a keyword.
colored_model_name = textattack.shared.utils.color_text(
args.model, color="blue", method="ansi"
)
if args.model.startswith("lstm"):
textattack.shared.logger.info(
f"Loading pre-trained TextAttack LSTM: {colored_model_name}"
)
model = textattack.models.helpers.LSTMForClassification.from_pretrained(
args.model
)
elif args.model.startswith("cnn"):
textattack.shared.logger.info(
f"Loading pre-trained TextAttack CNN: {colored_model_name}"
)
model = (
textattack.models.helpers.WordCNNForClassification.from_pretrained(
args.model
)
)
elif args.model.startswith("t5"):
model = textattack.models.helpers.T5ForTextToText.from_pretrained(
args.model
)
else:
raise ValueError(f"Unknown textattack model {args.model}")
# Choose the approprate model wrapper (based on whether or not this is
# a HuggingFace model).
if isinstance(model, textattack.models.helpers.T5ForTextToText):
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, model.tokenizer
)
else:
model = textattack.models.wrappers.PyTorchModelWrapper(
model, model.tokenizer
)
elif args.model and os.path.exists(args.model):
# Support loading TextAttack-trained models via just their folder path.
# If `args.model` is a path/directory, let's assume it was a model
# trained with textattack, and try and load it.
if os.path.exists(os.path.join(args.model, "t5-wrapper-config.json")):
model = textattack.models.helpers.T5ForTextToText.from_pretrained(
args.model
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, model.tokenizer
)
elif os.path.exists(os.path.join(args.model, "config.json")):
with open(os.path.join(args.model, "config.json")) as f:
config = json.load(f)
model_class = config["architectures"]
if (
model_class == "LSTMForClassification"
or model_class == "WordCNNForClassification"
):
model = eval(
f"textattack.models.helpers.{model_class}.from_pretrained({args.model})"
)
model = textattack.models.wrappers.PyTorchModelWrapper(
model, model.tokenizer
)
else:
# assume the model is from HuggingFace.
model = (
transformers.AutoModelForSequenceClassification.from_pretrained(
args.model
)
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model, use_fast=True
)
model = textattack.models.wrappers.HuggingFaceModelWrapper(
model, tokenizer
)
else:
raise ValueError(f"Error: unsupported TextAttack model {args.model}")
assert isinstance(
model, textattack.models.wrappers.ModelWrapper
), "`model` must be of type `textattack.models.wrappers.ModelWrapper`."
return model