Spaces:
Sleeping
Sleeping
File size: 12,533 Bytes
05bf4a2 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 1819fc4 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 0f91f56 64322bd 14b159d 64322bd 14b159d 64322bd 14b159d 64322bd 14b159d 64322bd 0f91f56 64322bd 1819fc4 64322bd 0f91f56 64322bd 14b159d 64322bd 14b159d 64322bd 14b159d 64322bd 14b159d 64322bd 0f91f56 64322bd 05bf4a2 64322bd 05bf4a2 64322bd 14b159d 64322bd 14b159d 64322bd 05bf4a2 0f91f56 05bf4a2 0f91f56 05bf4a2 64322bd 05bf4a2 64322bd 05bf4a2 64322bd 0f91f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import gradio as gr
import openai
import requests
##############################################################################
# 1. GPT 调用示例函数
##############################################################################
def generate_natural_language_description_gpt(tags, api_key, base_url=None, model="gpt-4"):
"""
使用 OpenAI GPT 生成自然语言描述的示例函数。
"""
if not api_key:
return "Error: GPT API Key not provided."
openai.api_key = api_key
if base_url:
openai.api_base = base_url
# 将 dict 转成可读字符串
tag_descriptions = "\n".join([
f"{key}: {', '.join(value) if isinstance(value, list) else value}"
for key, value in tags.items() if value
])
try:
response = openai.ChatCompletion.create(
model=model,
messages=[
{
"role": "system",
"content": (
"You are a creative assistant that generates detailed and imaginative scene descriptions "
"for AI generation prompts. Focus on the details provided and incorporate them into a "
"cohesive narrative. Use at least three sentences but no more than five sentences."
),
},
{
"role": "user",
"content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
},
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"GPT generation failed. Error: {e}"
##############################################################################
# 2. DeepSeek 调用示例函数 (真实请求)
##############################################################################
def generate_natural_language_description_deepseek(tags, api_key, base_url=None):
"""
使用 DeepSeek API 生成自然语言描述的真实示例函数。
假设 DeepSeek 文档里的生成接口是:
POST https://api.deepseek.com/v1/generate
Headers: {"Authorization": "Bearer <api_key>"}
Body(JSON): {"tags": {...}}
返回:
{"success": true, "data": {"description": "..."}}
"""
if not api_key:
return "Error: DeepSeek API Key not provided."
# 如果有自定义 base_url 就用,没有就用假设的默认
url = base_url or "https://api.deepseek.com/v1/generate"
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"tags": tags # 具体字段要根据实际 DeepSeek 文档
}
resp = requests.post(url, json=payload, headers=headers, timeout=30)
if resp.status_code == 200:
j = resp.json()
if j.get("success"):
# 假设描述存放在 data.description
return j["data"].get("description", "No 'description' found in data.")
else:
return f"DeepSeek generation failed, success=false. {j}"
else:
return f"DeepSeek generation failed with status {resp.status_code}. {resp.text}"
except Exception as e:
return f"DeepSeek generation request error: {e}"
##############################################################################
# 3. GPT 翻译函数
##############################################################################
def translate_text_with_gpt(text, target_language, api_key, base_url=None, model="gpt-4"):
"""
使用 GPT 来进行翻译的简单示例。
"""
if not api_key:
return "Error: GPT Translation Key not provided."
openai.api_key = api_key
if base_url:
openai.api_base = base_url
try:
system_prompt = f"You are a professional translator. Translate the following text to {target_language}:"
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": text},
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"GPT translation failed. Error: {e}"
##############################################################################
# 4. DeepSeek 翻译函数 (真实请求)
##############################################################################
def translate_text_with_deepseek(text, target_language, api_key, base_url=None):
"""
使用 DeepSeek 来进行翻译的真实示例函数。
假设 DeepSeek 文档里的翻译接口是:
POST https://api.deepseek.com/v1/translate
Headers: {"Authorization": "Bearer <api_key>"}
Body(JSON): {"text": "...", "target_language": "..."}
返回:
{"success": true, "data": {"translated_text": "..."}}
"""
if not api_key:
return "Error: DeepSeek Translation Key not provided."
url = base_url or "https://api.deepseek.com/v1/translate"
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"text": text,
"target_language": target_language
}
resp = requests.post(url, json=payload, headers=headers, timeout=30)
if resp.status_code == 200:
j = resp.json()
if j.get("success"):
# 假设翻译结果存放在 data.translated_text
return j["data"].get("translated_text", "No 'translated_text' found in data.")
else:
return f"DeepSeek translation failed, success=false. {j}"
else:
return f"DeepSeek translation failed with status {resp.status_code}. {resp.text}"
except Exception as e:
return f"DeepSeek translation request error: {e}"
##############################################################################
# 5. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述
##############################################################################
def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key):
"""
性别/物种转换的简单示例逻辑,然后调用相应 API 进行生成。
"""
tags = {}
# 根据选择设置性别或物种标签
if gender_option == "Trans_to_Male":
tags["gender"] = "male"
elif gender_option == "Trans_to_Female":
tags["gender"] = "female"
elif gender_option == "Trans_to_Mannequin":
tags["gender"] = "genderless"
elif gender_option == "Trans_to_Intersex":
tags["gender"] = "intersex"
elif gender_option == "Trans_to_Furry":
tags["gender"] = "furry"
tags["furry_species"] = furry_species or "unknown"
# 原始提示词
tags["base_prompt"] = prompt
if api_mode == "GPT":
scene_description = generate_natural_language_description_gpt(tags, api_key)
else: # DeepSeek
scene_description = generate_natural_language_description_deepseek(tags, api_key)
return scene_description
##############################################################################
# 6. 调用翻译函数
##############################################################################
def do_translation(scene_desc, translate_language, api_mode, api_key):
"""
根据选择的 API(GPT/DeepSeek)进行翻译。
"""
if not scene_desc.strip():
return ""
if api_mode == "GPT":
return translate_text_with_gpt(scene_desc, translate_language, api_key)
else:
return translate_text_with_deepseek(scene_desc, translate_language, api_key)
##############################################################################
# 7. 搭建 Gradio 界面
##############################################################################
def build_interface():
with gr.Blocks() as demo:
gr.Markdown("## Prompts_TransTool-提示词一键性别物种转换器")
with gr.Row():
with gr.Column():
# 选择调用哪个 API
api_mode = gr.Radio(
label="选择 API 服务 (Choose API Service)",
choices=["GPT", "DeepSeek"],
value="GPT"
)
# 输入 API Key
api_key = gr.Textbox(
label="API 密钥 (API Key)",
type="password",
placeholder="请输入你的 GPT 或 DeepSeek API 密钥"
)
# 性别 / Furry 选择
gender_option = gr.Radio(
label="性别 / Furry 选项 (Gender / Furry)",
choices=[
"Trans_to_Male",
"Trans_to_Female",
"Trans_to_Mannequin",
"Trans_to_Intersex",
"Trans_to_Furry"
],
value="Trans_to_Male",
)
# 选择 Furry 物种
furry_species = gr.Dropdown(
label="Furry 物种 (Furry Species)",
choices=["Wolf", "Fox", "Tiger", "Lion"],
value=None,
visible=False
)
# 当性别选项切换时,如果选择 Furry,就显示物种下拉,否则隐藏
def show_furry_species(gender):
return gr.update(visible=(gender == "Trans_to_Furry"))
gender_option.change(
show_furry_species,
inputs=[gender_option],
outputs=[furry_species]
)
with gr.Column():
# 输入 prompt
user_prompt = gr.Textbox(
label="提示词 (Prompt)",
lines=5,
placeholder=(
"Please Enter your prompt words. \n"
"在此输入你的提示词,例如:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..."
)
)
# 输出场景描述
generated_output = gr.Textbox(
label="转换后的提示词 (Generated Trans-Description)",
lines=7
)
with gr.Row():
translate_language = gr.Dropdown(
label="翻译语言 (Translation Language)",
choices=["English", "Chinese", "Japanese", "French", "German", "Dutch", "Arabic", "Russian", "Persian", "Italian"],
value="English",
)
translated_text = gr.Textbox(
label="翻译结果 (Translated Result)",
lines=7
)
######################################################################
# 事件绑定
######################################################################
def on_generate(prompt, gender, furry, mode, key, lang):
# 1) 调用 transform_prompt 拿到转换后的描述
trans_desc = transform_prompt(prompt, gender, furry, mode, key)
# 2) 调用翻译
trans_result = do_translation(trans_desc, lang, mode, key)
return trans_desc, trans_result
user_prompt.submit(
fn=on_generate,
inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
outputs=[generated_output, translated_text],
)
generate_button = gr.Button("生成 / Generate")
generate_button.click(
fn=on_generate,
inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
outputs=[generated_output, translated_text],
)
def on_translate(scene_desc, lang, mode, key):
return do_translation(scene_desc, lang, mode, key)
translate_language.change(
fn=on_translate,
inputs=[generated_output, translate_language, api_mode, api_key],
outputs=[translated_text]
)
return demo
if __name__ == "__main__":
demo = build_interface()
demo.launch()
|