File size: 12,533 Bytes
05bf4a2
64322bd
 
0f91f56
64322bd
 
0f91f56
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f91f56
 
 
64322bd
 
0f91f56
 
 
 
 
 
 
64322bd
 
 
 
0f91f56
 
64322bd
0f91f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64322bd
 
0f91f56
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f91f56
 
 
64322bd
 
0f91f56
 
 
 
 
 
 
64322bd
 
 
1819fc4
0f91f56
64322bd
0f91f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64322bd
 
0f91f56
64322bd
 
 
0f91f56
64322bd
 
 
 
14b159d
64322bd
14b159d
64322bd
14b159d
64322bd
14b159d
 
 
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
0f91f56
64322bd
 
 
 
 
 
1819fc4
64322bd
 
 
 
 
 
 
0f91f56
64322bd
 
 
 
14b159d
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b159d
 
 
 
 
64322bd
14b159d
64322bd
 
 
 
 
14b159d
64322bd
0f91f56
64322bd
 
 
 
05bf4a2
64322bd
 
 
 
 
 
 
 
 
 
 
 
05bf4a2
 
 
 
64322bd
 
 
 
14b159d
64322bd
 
 
 
 
 
14b159d
 
64322bd
 
 
 
 
 
 
 
 
05bf4a2
 
0f91f56
05bf4a2
0f91f56
05bf4a2
 
 
64322bd
 
05bf4a2
 
64322bd
 
 
 
 
05bf4a2
 
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f91f56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os 
import gradio as gr
import openai
import requests

##############################################################################
# 1. GPT 调用示例函数
##############################################################################
def generate_natural_language_description_gpt(tags, api_key, base_url=None, model="gpt-4"):
    """
    使用 OpenAI GPT 生成自然语言描述的示例函数。
    """
    if not api_key:
        return "Error: GPT API Key not provided."

    openai.api_key = api_key
    if base_url:
        openai.api_base = base_url

    # 将 dict 转成可读字符串
    tag_descriptions = "\n".join([
        f"{key}: {', '.join(value) if isinstance(value, list) else value}"
        for key, value in tags.items() if value
    ])

    try:
        response = openai.ChatCompletion.create(
            model=model,
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a creative assistant that generates detailed and imaginative scene descriptions "
                        "for AI generation prompts. Focus on the details provided and incorporate them into a "
                        "cohesive narrative. Use at least three sentences but no more than five sentences."
                    ),
                },
                {
                    "role": "user",
                    "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
                },
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT generation failed. Error: {e}"

##############################################################################
# 2. DeepSeek 调用示例函数 (真实请求)
##############################################################################
def generate_natural_language_description_deepseek(tags, api_key, base_url=None):
    """
    使用 DeepSeek API 生成自然语言描述的真实示例函数。
    假设 DeepSeek 文档里的生成接口是:
      POST https://api.deepseek.com/v1/generate
      Headers: {"Authorization": "Bearer <api_key>"}
      Body(JSON): {"tags": {...}}
    返回: 
      {"success": true, "data": {"description": "..."}}
    """
    if not api_key:
        return "Error: DeepSeek API Key not provided."
    
    # 如果有自定义 base_url 就用,没有就用假设的默认
    url = base_url or "https://api.deepseek.com/v1/generate"

    try:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {api_key}"
        }
        payload = {
            "tags": tags  # 具体字段要根据实际 DeepSeek 文档
        }
        resp = requests.post(url, json=payload, headers=headers, timeout=30)
        if resp.status_code == 200:
            j = resp.json()
            if j.get("success"):
                # 假设描述存放在 data.description
                return j["data"].get("description", "No 'description' found in data.")
            else:
                return f"DeepSeek generation failed, success=false. {j}"
        else:
            return f"DeepSeek generation failed with status {resp.status_code}. {resp.text}"
    except Exception as e:
        return f"DeepSeek generation request error: {e}"

##############################################################################
# 3. GPT 翻译函数
##############################################################################
def translate_text_with_gpt(text, target_language, api_key, base_url=None, model="gpt-4"):
    """
    使用 GPT 来进行翻译的简单示例。
    """
    if not api_key:
        return "Error: GPT Translation Key not provided."

    openai.api_key = api_key
    if base_url:
        openai.api_base = base_url

    try:
        system_prompt = f"You are a professional translator. Translate the following text to {target_language}:"
        response = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": text},
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT translation failed. Error: {e}"

##############################################################################
# 4. DeepSeek 翻译函数 (真实请求)
##############################################################################
def translate_text_with_deepseek(text, target_language, api_key, base_url=None):
    """
    使用 DeepSeek 来进行翻译的真实示例函数。
    假设 DeepSeek 文档里的翻译接口是:
      POST https://api.deepseek.com/v1/translate
      Headers: {"Authorization": "Bearer <api_key>"}
      Body(JSON): {"text": "...", "target_language": "..."}
    返回: 
      {"success": true, "data": {"translated_text": "..."}}
    """
    if not api_key:
        return "Error: DeepSeek Translation Key not provided."
    
    url = base_url or "https://api.deepseek.com/v1/translate"

    try:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {api_key}"
        }
        payload = {
            "text": text,
            "target_language": target_language
        }
        resp = requests.post(url, json=payload, headers=headers, timeout=30)
        if resp.status_code == 200:
            j = resp.json()
            if j.get("success"):
                # 假设翻译结果存放在 data.translated_text
                return j["data"].get("translated_text", "No 'translated_text' found in data.")
            else:
                return f"DeepSeek translation failed, success=false. {j}"
        else:
            return f"DeepSeek translation failed with status {resp.status_code}. {resp.text}"
    except Exception as e:
        return f"DeepSeek translation request error: {e}"

##############################################################################
# 5. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述
##############################################################################
def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key):
    """
    性别/物种转换的简单示例逻辑,然后调用相应 API 进行生成。
    """
    tags = {}
    
    # 根据选择设置性别或物种标签
    if gender_option == "Trans_to_Male":
        tags["gender"] = "male"
    elif gender_option == "Trans_to_Female":
        tags["gender"] = "female"
    elif gender_option == "Trans_to_Mannequin":
        tags["gender"] = "genderless"
    elif gender_option == "Trans_to_Intersex":
        tags["gender"] = "intersex"
    elif gender_option == "Trans_to_Furry":
        tags["gender"] = "furry"
        tags["furry_species"] = furry_species or "unknown"
    
    # 原始提示词
    tags["base_prompt"] = prompt

    if api_mode == "GPT":
        scene_description = generate_natural_language_description_gpt(tags, api_key)
    else:  # DeepSeek
        scene_description = generate_natural_language_description_deepseek(tags, api_key)
    
    return scene_description

##############################################################################
# 6. 调用翻译函数
##############################################################################
def do_translation(scene_desc, translate_language, api_mode, api_key):
    """
    根据选择的 API(GPT/DeepSeek)进行翻译。
    """
    if not scene_desc.strip():
        return ""

    if api_mode == "GPT":
        return translate_text_with_gpt(scene_desc, translate_language, api_key)
    else:
        return translate_text_with_deepseek(scene_desc, translate_language, api_key)

##############################################################################
# 7. 搭建 Gradio 界面
##############################################################################
def build_interface():
    with gr.Blocks() as demo:

        gr.Markdown("## Prompts_TransTool-提示词一键性别物种转换器")

        with gr.Row():
            with gr.Column():
                # 选择调用哪个 API
                api_mode = gr.Radio(
                    label="选择 API 服务 (Choose API Service)",
                    choices=["GPT", "DeepSeek"],
                    value="GPT"
                )

                # 输入 API Key
                api_key = gr.Textbox(
                    label="API 密钥 (API Key)",
                    type="password",
                    placeholder="请输入你的 GPT 或 DeepSeek API 密钥"
                )

                # 性别 / Furry 选择
                gender_option = gr.Radio(
                    label="性别 / Furry 选项 (Gender / Furry)",
                    choices=[
                        "Trans_to_Male", 
                        "Trans_to_Female", 
                        "Trans_to_Mannequin", 
                        "Trans_to_Intersex", 
                        "Trans_to_Furry"
                    ],
                    value="Trans_to_Male",
                )

                # 选择 Furry 物种
                furry_species = gr.Dropdown(
                    label="Furry 物种 (Furry Species)",
                    choices=["Wolf", "Fox", "Tiger", "Lion"],  
                    value=None,
                    visible=False
                )

                # 当性别选项切换时,如果选择 Furry,就显示物种下拉,否则隐藏
                def show_furry_species(gender):
                    return gr.update(visible=(gender == "Trans_to_Furry"))

                gender_option.change(
                    show_furry_species, 
                    inputs=[gender_option], 
                    outputs=[furry_species]
                )

            with gr.Column():
                # 输入 prompt
                user_prompt = gr.Textbox(
                    label="提示词 (Prompt)",
                    lines=5,
                    placeholder=(
                        "Please Enter your prompt words. \n"
                        "在此输入你的提示词,例如:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..."
                    )
                )

                # 输出场景描述
                generated_output = gr.Textbox(
                    label="转换后的提示词 (Generated Trans-Description)",
                    lines=7
                )

        with gr.Row():
            translate_language = gr.Dropdown(
                label="翻译语言 (Translation Language)",
                choices=["English", "Chinese", "Japanese", "French", "German", "Dutch", "Arabic", "Russian", "Persian", "Italian"],
                value="English",
            )
            translated_text = gr.Textbox(
                label="翻译结果 (Translated Result)",
                lines=7
            )

        ######################################################################
        # 事件绑定
        ######################################################################
        
        def on_generate(prompt, gender, furry, mode, key, lang):
            # 1) 调用 transform_prompt 拿到转换后的描述
            trans_desc = transform_prompt(prompt, gender, furry, mode, key)
            # 2) 调用翻译
            trans_result = do_translation(trans_desc, lang, mode, key)
            return trans_desc, trans_result

        user_prompt.submit(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        generate_button = gr.Button("生成 / Generate")
        generate_button.click(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        def on_translate(scene_desc, lang, mode, key):
            return do_translation(scene_desc, lang, mode, key)

        translate_language.change(
            fn=on_translate,
            inputs=[generated_output, translate_language, api_mode, api_key],
            outputs=[translated_text]
        )

    return demo

if __name__ == "__main__":
    demo = build_interface()
    demo.launch()