File size: 12,986 Bytes
bef3741
 
 
 
0f91f56
bef3741
 
 
 
64322bd
 
bef3741
64322bd
bef3741
64322bd
bef3741
 
 
 
64322bd
bef3741
64322bd
bef3741
 
 
64322bd
bef3741
 
 
 
64322bd
bef3741
64322bd
bef3741
64322bd
bef3741
 
64322bd
 
 
bef3741
 
64322bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef3741
 
64322bd
 
 
0f91f56
bef3741
0f91f56
bef3741
64322bd
bef3741
 
64322bd
 
bef3741
 
 
0f91f56
64322bd
0f91f56
 
 
 
 
 
bef3741
0f91f56
 
 
bef3741
 
 
 
0f91f56
bef3741
0f91f56
bef3741
0f91f56
 
64322bd
 
bef3741
64322bd
bef3741
 
 
64322bd
bef3741
64322bd
bef3741
64322bd
bef3741
64322bd
 
bef3741
64322bd
bef3741
64322bd
 
 
bef3741
64322bd
 
bef3741
64322bd
 
 
0f91f56
bef3741
0f91f56
bef3741
64322bd
bef3741
 
 
0f91f56
64322bd
0f91f56
 
 
 
 
 
 
 
 
 
 
bef3741
 
 
0f91f56
bef3741
0f91f56
bef3741
0f91f56
 
64322bd
 
0f91f56
64322bd
 
 
bef3741
 
64322bd
 
 
bef3741
14b159d
64322bd
14b159d
64322bd
14b159d
64322bd
14b159d
 
 
64322bd
 
 
bef3741
64322bd
 
bef3741
64322bd
 
 
 
 
 
 
 
bef3741
64322bd
 
 
1819fc4
64322bd
 
 
 
 
 
0f91f56
64322bd
 
 
 
bef3741
64322bd
 
 
bef3741
64322bd
 
 
 
 
 
 
 
 
 
bef3741
64322bd
 
bef3741
64322bd
bef3741
64322bd
bef3741
 
 
 
 
64322bd
14b159d
64322bd
 
bef3741
64322bd
 
bef3741
64322bd
0f91f56
64322bd
 
 
05bf4a2
64322bd
bef3741
 
64322bd
 
 
 
bef3741
64322bd
 
 
05bf4a2
bef3741
05bf4a2
64322bd
 
bef3741
64322bd
14b159d
64322bd
 
 
 
bef3741
64322bd
 
bef3741
 
 
 
14b159d
64322bd
bef3741
64322bd
 
 
 
 
bef3741
 
 
 
05bf4a2
 
 
 
 
bef3741
64322bd
 
05bf4a2
 
64322bd
 
bef3741
64322bd
 
 
05bf4a2
 
64322bd
 
bef3741
64322bd
 
 
 
 
 
 
 
 
 
 
bef3741
 
 
64322bd
 
bef3741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
##############################################
# app.py
##############################################
import os
import requests
import gradio as gr

# 新版 openai>=1.0.0 引用方式
from openai import OpenAI

##############################################################################
# 1. GPT 调用示例函数(新版 openai>=1.0.0)
##############################################################################
def generate_natural_language_description_gpt(tags, api_key=None, base_url=None, model="gpt-4o"):
    """
    使用新版 openai>=1.0.0 库来调用 GPT。
      1) from openai import OpenAI
      2) client = OpenAI(api_key=...)
      3) client.chat.completions.create(...)
    """
    # 若没传入 api_key,就从环境变量获取
    if not api_key:
        api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        return "Error: No GPT API Key provided."

    # 创建一个新的 OpenAI Client
    client = OpenAI(api_key=api_key)
    
    # 如果你有自定义 base_url(如代理/私有化部署),可在此设置
    if base_url:
        client.base_url = base_url

    # 将 tags 拼出可读字符串
    tag_descriptions = "\n".join([
        f"{k}: {', '.join(v) if isinstance(v, list) else v}"
        for k, v in tags.items() if v
    ])

    try:
        chat_completion = client.chat.completions.create(
            model=model,  # 例如 "gpt-4o", "gpt-4o-mini", "gpt-3.5-turbo" 等
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a creative assistant that generates detailed and imaginative scene descriptions "
                        "for AI generation prompts. Focus on the details provided and incorporate them into a "
                        "cohesive narrative. Use at least three sentences but no more than five sentences."
                    ),
                },
                {
                    "role": "user",
                    "content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.",
                },
            ]
        )
        # 新版库返回对象中,内容在 chat_completion.choices[0].message.content
        return chat_completion.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT generation failed. Error: {e}"

##############################################################################
# 2. DeepSeek 调用示例函数(真实 HTTP 请求示例,需你修改)
##############################################################################
def generate_natural_language_description_deepseek(tags, api_key=None, base_url=None):
    """
    调用 DeepSeek API 获取描述。如果你不需要 DeepSeek,可删除此函数。
    注意:此处示例的接口 URL、请求体和返回格式需要替换为真实 DeepSeek 文档内容。
    """
    if not api_key:
        return "Error: No DeepSeek API Key provided."

    # 假设你的 DeepSeek 接口地址如下,请改为实际地址
    url = base_url or "https://api.deepseek.com/v1/generate"

    try:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {api_key}"
        }
        payload = {
            "tags": tags
        }
        resp = requests.post(url, json=payload, headers=headers, timeout=30)
        if resp.status_code == 200:
            data = resp.json()
            # 根据你们的返回结构来取值
            if data.get("success"):
                return data["data"].get("description", "No description found.")
            else:
                return f"DeepSeek generation success=false. {data}"
        else:
            return f"DeepSeek generation failed. Status {resp.status_code}, {resp.text}"
    except Exception as e:
        return f"DeepSeek generation request error: {e}"

##############################################################################
# 3. GPT 翻译函数(新版 openai>=1.0.0)
##############################################################################
def translate_text_with_gpt(text, target_language, api_key=None, base_url=None, model="gpt-4o"):
    if not api_key:
        api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        return "Error: No GPT Translation Key provided."

    client = OpenAI(api_key=api_key)
    if base_url:
        client.base_url = base_url

    try:
        # Prompt: 让 GPT 扮演翻译
        system_prompt = f"You are a professional translator. Translate the following text to {target_language}:"
        chat_completion = client.chat.completions.create(
            model=model,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user",   "content": text},
            ]
        )
        return chat_completion.choices[0].message.content.strip()
    except Exception as e:
        return f"GPT translation failed. Error: {e}"

##############################################################################
# 4. DeepSeek 翻译函数(需你修改为真实接口)
##############################################################################
def translate_text_with_deepseek(text, target_language, api_key=None, base_url=None):
    if not api_key:
        return "Error: No DeepSeek Translation Key provided."

    # 假设 DeepSeek 翻译接口如下,请改为实际
    url = base_url or "https://api.deepseek.com/v1/translate"

    try:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {api_key}"
        }
        payload = {
            "text": text,
            "target_language": target_language
        }
        resp = requests.post(url, json=payload, headers=headers, timeout=30)
        if resp.status_code == 200:
            data = resp.json()
            if data.get("success"):
                return data["data"].get("translated_text", "No translated_text found.")
            else:
                return f"DeepSeek translation success=false. {data}"
        else:
            return f"DeepSeek translation failed. Status {resp.status_code}, {resp.text}"
    except Exception as e:
        return f"DeepSeek translation request error: {e}"

##############################################################################
# 5. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述
##############################################################################
def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key):
    """
    示例转换逻辑:将 prompt 结合 gender/furry 信息组成 tags,然后调用指定 API。
    你可以在此处扩充更复杂的处理逻辑。
    """
    tags = {}
    
    # 性别 / 物种 设定
    if gender_option == "Trans_to_Male":
        tags["gender"] = "male"
    elif gender_option == "Trans_to_Female":
        tags["gender"] = "female"
    elif gender_option == "Trans_to_Mannequin":
        tags["gender"] = "genderless"
    elif gender_option == "Trans_to_Intersex":
        tags["gender"] = "intersex"
    elif gender_option == "Trans_to_Furry":
        tags["gender"] = "furry"
        tags["furry_species"] = furry_species or "unknown"
    
    # 原始 prompt
    tags["base_prompt"] = prompt

    # 调用对应 API
    if api_mode == "GPT":
        scene_description = generate_natural_language_description_gpt(tags, api_key)
    else:  # DeepSeek
        scene_description = generate_natural_language_description_deepseek(tags, api_key)
    
    return scene_description

##############################################################################
# 6. 翻译逻辑:看用户选择,用 GPT 或 DeepSeek 做翻译
##############################################################################
def do_translation(scene_desc, translate_language, api_mode, api_key):
    if not scene_desc.strip():
        return ""
    if api_mode == "GPT":
        return translate_text_with_gpt(scene_desc, translate_language, api_key)
    else:
        return translate_text_with_deepseek(scene_desc, translate_language, api_key)

##############################################################################
# 7. 搭建 Gradio 界面
##############################################################################
def build_interface():
    with gr.Blocks() as demo:

        gr.Markdown("## Prompts_TransTool - 提示词一键性别物种转换器(openai>=1.0.0 版)")

        with gr.Row():
            with gr.Column():
                # 选择 API 服务(GPT / DeepSeek)
                api_mode = gr.Radio(
                    label="选择 API 服务 (Choose API Service)",
                    choices=["GPT", "DeepSeek"],
                    value="GPT"
                )

                # 输入 API Key
                api_key = gr.Textbox(
                    label="API 密钥 (API Key)",
                    type="password",
                    placeholder="在此输入 GPT 或 DeepSeek 的 API 密钥"
                )

                # 性别 / Furry 选项
                gender_option = gr.Radio(
                    label="性别 / Furry 选项",
                    choices=[
                        "Trans_to_Male",
                        "Trans_to_Female",
                        "Trans_to_Mannequin",
                        "Trans_to_Intersex",
                        "Trans_to_Furry",
                    ],
                    value="Trans_to_Male",
                )

                # 如果是 Furry,显示可选物种
                furry_species = gr.Dropdown(
                    label="Furry 物种 (Furry Species)",
                    choices=["Wolf", "Fox", "Tiger", "Lion"],
                    value=None,
                    visible=False
                )

                def show_furry_species(gender):
                    return gr.update(visible=(gender == "Trans_to_Furry"))
                gender_option.change(
                    fn=show_furry_species,
                    inputs=[gender_option],
                    outputs=[furry_species]
                )

            with gr.Column():
                # 用户输入 prompt
                user_prompt = gr.Textbox(
                    label="提示词 (Prompt)",
                    lines=5,
                    placeholder=(
                        "示例:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..."
                    )
                )

                # 转换后输出
                generated_output = gr.Textbox(
                    label="转换后的提示词 (Generated Trans-Description)",
                    lines=7
                )

        with gr.Row():
            # 翻译语言
            translate_language = gr.Dropdown(
                label="翻译语言 (Translation Language)",
                choices=[
                    "English", "Chinese", "Japanese", "French", "German", 
                    "Dutch", "Arabic", "Russian", "Persian", "Italian"
                ],
                value="English",
            )
            # 翻译结果
            translated_text = gr.Textbox(
                label="翻译结果 (Translated Result)",
                lines=7
            )

        ############################################################################
        # 事件逻辑
        ############################################################################
        # 1) 生成并翻译
        def on_generate(prompt, gender, furry, mode, key, lang):
            trans_desc = transform_prompt(prompt, gender, furry, mode, key)
            trans_result = do_translation(trans_desc, lang, mode, key)
            return trans_desc, trans_result

        # 回车提交
        user_prompt.submit(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        # 按钮点击
        generate_button = gr.Button("生成 / Generate")
        generate_button.click(
            fn=on_generate,
            inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language],
            outputs=[generated_output, translated_text],
        )

        # 2) 语言切换再翻译
        def on_translate(scene_desc, lang, mode, key):
            return do_translation(scene_desc, lang, mode, key)

        translate_language.change(
            fn=on_translate,
            inputs=[generated_output, translate_language, api_mode, api_key],
            outputs=[translated_text]
        )

    return demo

##############################################################################
# 主入口
##############################################################################
if __name__ == "__main__":
    demo = build_interface()
    demo.launch()