Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import openai | |
############################################################################## | |
# 1. GPT 或 DeepSeek 调用示例函数 | |
############################################################################## | |
def generate_natural_language_description_gpt(tags, api_key, base_url=None, model="gpt-4"): | |
""" | |
使用 OpenAI GPT 生成自然语言描述的示例函数。 | |
""" | |
if not api_key: | |
return "Error: GPT API Key not provided." | |
# 设置 API | |
openai.api_key = api_key | |
if base_url: | |
openai.api_base = base_url | |
# 将 dict 转成可读字符串 | |
tag_descriptions = "\n".join([ | |
f"{key}: {', '.join(value) if isinstance(value, list) else value}" | |
for key, value in tags.items() if value | |
]) | |
try: | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": ( | |
"You are a creative assistant that generates detailed and imaginative scene descriptions " | |
"for AI generation prompts. Focus on the details provided and incorporate them into a " | |
"cohesive narrative. Use at least three sentences but no more than five sentences." | |
), | |
}, | |
{ | |
"role": "user", | |
"content": f"Here are the tags and details:\n{tag_descriptions}\nPlease generate a vivid, imaginative scene description.", | |
}, | |
] | |
) | |
return response.choices[0].message.content.strip() | |
except Exception as e: | |
return f"GPT generation failed. Error: {e}" | |
def generate_natural_language_description_deepseek(tags, api_key, base_url=None): | |
""" | |
使用 DeepSeek API 生成自然语言描述的示例函数。 | |
这里演示伪代码,你需要根据实际 DeepSeek 的文档进行实现。 | |
""" | |
if not api_key: | |
return "Error: DeepSeek API Key not provided." | |
# 伪代码示例(需根据你的 DeepSeek API 文档做实际实现) | |
# import requests | |
# response = requests.post( | |
# url=base_url or "https://api.deepseek.com/xxx", | |
# headers={"Authorization": f"Bearer {api_key}"}, | |
# json={"tags": tags} | |
# ) | |
# return response.json()["description"] | |
return "DeepSeek 生成的描述(此处为示例伪代码)" | |
############################################################################## | |
# 2. 翻译示例函数(使用 GPT 或 DeepSeek) | |
############################################################################## | |
def translate_text_with_gpt(text, target_language, api_key, base_url=None, model="gpt-4"): | |
""" | |
使用 GPT 来进行翻译的简单示例。 | |
""" | |
if not api_key: | |
return "Error: GPT Translation Key not provided." | |
openai.api_key = api_key | |
if base_url: | |
openai.api_base = base_url | |
try: | |
system_prompt = f"You are a professional translator. Translate the following text to {target_language}:" | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": text}, | |
] | |
) | |
return response.choices[0].message.content.strip() | |
except Exception as e: | |
return f"GPT translation failed. Error: {e}" | |
def translate_text_with_deepseek(text, target_language, api_key, base_url=None): | |
""" | |
使用 DeepSeek 来进行翻译的简单示例(伪代码)。 | |
""" | |
if not api_key: | |
return "Error: DeepSeek Translation Key not provided." | |
# 同样需要根据 DeepSeek 的文档来实现 | |
return f"DeepSeek翻译后的文本(示例)。目标语言:{target_language}" | |
############################################################################## | |
# 3. 根据用户选择进行提示词转换并调用 GPT/DeepSeek 生成描述 | |
############################################################################## | |
def transform_prompt(prompt, gender_option, furry_species, api_mode, api_key): | |
""" | |
性别/物种转换的简单示例逻辑,然后调用相应 API。 | |
你可在此处结合“关于Male/Female/ambiguous/intersex的details”添加更复杂的处理。 | |
""" | |
tags = {} | |
# 根据选择设置性别或物种标签 | |
if gender_option == "Trans_to_Male": | |
# 这里可以参考你的细节 rules 做更加复杂的转换 | |
tags["gender"] = "male" | |
elif gender_option == "Trans_to_Female": | |
tags["gender"] = "female" | |
elif gender_option == "Trans_to_Mannequin": | |
# 无明显二性征 | |
tags["gender"] = "genderless" | |
elif gender_option == "Trans_to_Intersex": | |
tags["gender"] = "intersex" | |
elif gender_option == "Trans_to_Furry": | |
tags["gender"] = "furry" | |
tags["furry_species"] = furry_species or "unknown" | |
# 原始提示词 | |
tags["base_prompt"] = prompt | |
# 根据选择的 API 调用对应的函数 | |
if api_mode == "GPT": | |
scene_description = generate_natural_language_description_gpt(tags, api_key) | |
else: # DeepSeek | |
scene_description = generate_natural_language_description_deepseek(tags, api_key) | |
return scene_description | |
############################################################################## | |
# 4. 调用翻译函数 | |
############################################################################## | |
def do_translation(scene_desc, translate_language, api_mode, api_key): | |
""" | |
根据选择的 API(GPT/DeepSeek)进行翻译。 | |
""" | |
if not scene_desc.strip(): | |
return "" # 无内容则不翻译 | |
if api_mode == "GPT": | |
return translate_text_with_gpt(scene_desc, translate_language, api_key) | |
else: | |
return translate_text_with_deepseek(scene_desc, translate_language, api_key) | |
############################################################################## | |
# 5. 搭建 Gradio 界面 | |
############################################################################## | |
def build_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## Prompts_TransTool-提示词一键性别物种转换器") | |
with gr.Row(): | |
with gr.Column(): | |
# 选择调用哪个 API | |
api_mode = gr.Radio( | |
label="选择 API 服务 (Choose API Service)", | |
choices=["GPT", "DeepSeek"], | |
value="GPT" | |
) | |
# 输入 API Key | |
api_key = gr.Textbox( | |
label="API 密钥 (API Key)", | |
type="password", | |
placeholder="请输入你的 GPT 或 DeepSeek API 密钥" | |
) | |
# 性别 / Furry 选择 | |
gender_option = gr.Radio( | |
label="性别 / Furry 选项 (Gender / Furry)", | |
choices=[ | |
"Trans_to_Male", | |
"Trans_to_Female", | |
"Trans_to_Mannequin", | |
"Trans_to_Intersex", | |
"Trans_to_Furry" | |
], | |
value="Trans_to_Male", | |
) | |
# 选择 Furry 物种 | |
furry_species = gr.Dropdown( | |
label="Furry 物种 (Furry Species)", | |
choices=["Wolf", "Fox", "Tiger", "Lion"], | |
value=None, | |
visible=False # 初始不可见 | |
) | |
# 当性别选项切换时,如果选择 Furry,就显示物种下拉,否则隐藏 | |
def show_furry_species(gender): | |
return gr.update(visible=(gender == "Trans_to_Furry")) | |
gender_option.change( | |
show_furry_species, | |
inputs=[gender_option], | |
outputs=[furry_species] | |
) | |
with gr.Column(): | |
# 输入 prompt | |
user_prompt = gr.Textbox( | |
label="提示词 (Prompt)", | |
lines=5, | |
placeholder=( | |
"Please Enter your prompt words. \n" | |
"在此输入你的提示词,例如:一位穿着红色连衣裙的少女,坐在落日余晖下的草地上..." | |
) | |
) | |
# 输出场景描述 | |
generated_output = gr.Textbox( | |
label="转换后的提示词 (Generated Trans-Description)", | |
lines=7 | |
) | |
# 翻译区域 | |
with gr.Row(): | |
translate_language = gr.Dropdown( | |
label="翻译语言 (Translation Language)", | |
# 可自行添加更多语言选项 | |
choices=["English", "Chinese", "Japanese", "French", "German", "Dutch", "Arabic", "Russian", "Persian", "Italian"], | |
value="English", | |
) | |
translated_text = gr.Textbox( | |
label="翻译结果 (Translated Result)", | |
lines=7 | |
) | |
###################################################################### | |
# 事件绑定 | |
###################################################################### | |
# 新增:生成时,直接返回「转换结果」和「翻译结果」并一起更新 | |
def on_generate(prompt, gender, furry, mode, key, lang): | |
# 1) 先做性别/物种转换,拿到“转换后”提示词 | |
trans_desc = transform_prompt(prompt, gender, furry, mode, key) | |
# 2) 立刻翻译 | |
trans_result = do_translation(trans_desc, lang, mode, key) | |
# 返回两项 | |
return trans_desc, trans_result | |
# 当用户在 prompt 输入后按回车时,触发生成场景描述 + 翻译 | |
user_prompt.submit( | |
fn=on_generate, | |
inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language], | |
outputs=[generated_output, translated_text], | |
) | |
# 点击按钮也触发同样的逻辑 | |
generate_button = gr.Button("生成 / Generate") | |
generate_button.click( | |
fn=on_generate, | |
inputs=[user_prompt, gender_option, furry_species, api_mode, api_key, translate_language], | |
outputs=[generated_output, translated_text], | |
) | |
# 当用户切换翻译语言时,如果已经有转换后的内容,则再翻译一次 | |
def on_translate(scene_desc, lang, mode, key): | |
return do_translation(scene_desc, lang, mode, key) | |
# 注意:这里只更新“翻译结果”一项 | |
translate_language.change( | |
fn=on_translate, | |
inputs=[generated_output, translate_language, api_mode, api_key], | |
outputs=[translated_text] | |
) | |
return demo | |
# 在 Spaces 启动 | |
if __name__ == "__main__": | |
demo = build_interface() | |
demo.launch() |