Spaces:
Running
Running
Use MistralAI endpoint directly and streaming bot
Browse files- app.py +122 -13
- requirements.txt +6 -6
- worker.py +0 -106
app.py
CHANGED
@@ -1,21 +1,134 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
from pathlib import Path
|
5 |
-
import
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Get data from url
|
9 |
url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
10 |
r = requests.get(url, stream=True)
|
11 |
-
document_path = Path('
|
|
|
12 |
document_path.write_bytes(r.content)
|
13 |
-
# document_path="
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def handle_prompt(message, history):
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations documentation"
|
21 |
example_questions = [
|
@@ -24,11 +137,7 @@ example_questions = [
|
|
24 |
"Which are the largest volumes in CAMELS simulations?",
|
25 |
"How can I get the power spectrum of a simulation?"
|
26 |
]
|
27 |
-
# chatbot = gr.Chatbot(value=[{"role": "assistant", "content": greetingsmessage}])
|
28 |
-
# chatbot = gr.Chatbot(value=[[None, greetingsmessage]])
|
29 |
-
# chatbot = gr.Chatbot(value=gr.ChatMessage(role="assistant",content="How can I help you?"))
|
30 |
-
# chatbot = gr.Chatbot(placeholder=greetingsmessage)
|
31 |
|
32 |
-
demo = gr.ChatInterface(handle_prompt, type="messages", title="CAMELS DocBot",examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot)
|
33 |
|
34 |
demo.launch()
|
|
|
1 |
+
# https://python.langchain.com/docs/tutorials/rag/
|
2 |
import gradio as gr
|
3 |
+
from langchain import hub
|
4 |
+
from langchain_chroma import Chroma
|
5 |
+
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
from langchain_core.runnables import RunnablePassthrough
|
7 |
+
from langchain_mistralai import MistralAIEmbeddings
|
8 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_mistralai import ChatMistralAI
|
11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
12 |
import requests
|
13 |
from pathlib import Path
|
14 |
+
from langchain_community.document_loaders import WebBaseLoader
|
15 |
+
import bs4
|
16 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
17 |
+
from urllib.parse import urljoin
|
18 |
+
|
19 |
+
rate_limiter = InMemoryRateLimiter(
|
20 |
+
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
21 |
+
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
22 |
+
max_bucket_size=10, # Controls the maximum burst size.
|
23 |
+
)
|
24 |
|
25 |
# Get data from url
|
26 |
url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
27 |
r = requests.get(url, stream=True)
|
28 |
+
document_path = Path('data.pdf')
|
29 |
+
|
30 |
document_path.write_bytes(r.content)
|
31 |
+
# document_path = "camels-readthedocs-io-en-latest.pdf"
|
32 |
+
loader = PyPDFLoader(document_path)
|
33 |
+
docs = loader.load()
|
34 |
+
|
35 |
+
# # Load, chunk and index the contents of the blog.
|
36 |
+
# url = "https://lilianweng.github.io/posts/2023-06-23-agent/"
|
37 |
+
# loader = WebBaseLoader(
|
38 |
+
# web_paths=(url,),
|
39 |
+
# bs_kwargs=dict(
|
40 |
+
# parse_only=bs4.SoupStrainer(
|
41 |
+
# class_=("post-content", "post-title", "post-header")
|
42 |
+
# )
|
43 |
+
# ),
|
44 |
+
# )
|
45 |
+
# loader = WebBaseLoader(url)
|
46 |
+
# docs = loader.load()
|
47 |
+
|
48 |
+
# def get_subpages(base_url):
|
49 |
+
# visited_urls = []
|
50 |
+
# urls_to_visit = [base_url]
|
51 |
+
|
52 |
+
# while urls_to_visit:
|
53 |
+
# url = urls_to_visit.pop(0)
|
54 |
+
# if url in visited_urls:
|
55 |
+
# continue
|
56 |
+
|
57 |
+
# visited_urls.append(url)
|
58 |
+
# response = requests.get(url)
|
59 |
+
# soup = bs4.BeautifulSoup(response.content, "html.parser")
|
60 |
+
|
61 |
+
# for link in soup.find_all("a", href=True):
|
62 |
+
# full_url = urljoin(base_url, link['href'])
|
63 |
+
# if base_url in full_url and not full_url.endswith(".html") and full_url not in visited_urls:
|
64 |
+
# urls_to_visit.append(full_url)
|
65 |
+
# visited_urls = visited_urls[1:]
|
66 |
+
|
67 |
+
# return visited_urls
|
68 |
+
|
69 |
+
# base_url = "https://camels.readthedocs.io/en/latest/"
|
70 |
+
# # base_url = "https://carla.readthedocs.io/en/latest/"
|
71 |
+
# # urls = get_subpages(base_url)
|
72 |
+
|
73 |
+
# tokenfile = open("urls.txt")
|
74 |
+
# urls = tokenfile.readlines()
|
75 |
+
# urls = [url.replace("\n","") for url in urls]
|
76 |
+
# tokenfile.close()
|
77 |
+
# print(urls)
|
78 |
+
|
79 |
+
# # Load, chunk and index the contents of the blog.
|
80 |
+
# loader = WebBaseLoader(urls)
|
81 |
+
# docs = loader.load()
|
82 |
+
|
83 |
+
def format_docs(docs):
|
84 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
85 |
+
|
86 |
+
def RAG(llm, docs, embeddings):
|
87 |
+
|
88 |
+
# Split text
|
89 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
90 |
+
splits = text_splitter.split_documents(docs)
|
91 |
+
|
92 |
+
# Create vector store
|
93 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
94 |
+
|
95 |
+
# Retrieve and generate using the relevant snippets of the documents
|
96 |
+
retriever = vectorstore.as_retriever()
|
97 |
+
|
98 |
+
# Prompt basis example for RAG systems
|
99 |
+
prompt = hub.pull("rlm/rag-prompt")
|
100 |
+
|
101 |
+
# Create the chain
|
102 |
+
rag_chain = (
|
103 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
104 |
+
| prompt
|
105 |
+
| llm
|
106 |
+
| StrOutputParser()
|
107 |
+
)
|
108 |
+
|
109 |
+
return rag_chain
|
110 |
+
|
111 |
+
# LLM model
|
112 |
+
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
113 |
+
|
114 |
+
# Embeddings
|
115 |
+
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
116 |
+
# embed_model = "nvidia/NV-Embed-v2"
|
117 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
118 |
+
# embeddings = MistralAIEmbeddings()
|
119 |
+
|
120 |
+
# RAG chain
|
121 |
+
rag_chain = RAG(llm, docs, embeddings)
|
122 |
|
123 |
def handle_prompt(message, history):
|
124 |
+
try:
|
125 |
+
# Stream output
|
126 |
+
out=""
|
127 |
+
for chunk in rag_chain.stream(message):
|
128 |
+
out += chunk
|
129 |
+
yield out
|
130 |
+
except:
|
131 |
+
raise gr.Error("Requests rate limit exceeded")
|
132 |
|
133 |
greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations documentation"
|
134 |
example_questions = [
|
|
|
137 |
"Which are the largest volumes in CAMELS simulations?",
|
138 |
"How can I get the power spectrum of a simulation?"
|
139 |
]
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
demo = gr.ChatInterface(handle_prompt, type="messages", title="CAMELS DocBot", examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot)
|
142 |
|
143 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
pdf2image
|
2 |
-
pypdf
|
3 |
-
tiktoken
|
4 |
langchain
|
5 |
langchain-community
|
6 |
-
langchain-
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
1 |
langchain
|
2 |
langchain-community
|
3 |
+
langchain-chroma
|
4 |
+
langchain-mistralai
|
5 |
+
beautifulsoup4
|
6 |
+
pypdf==5.0.1
|
7 |
+
sentence-transformers==2.2.2
|
8 |
huggingface_hub==0.25.2
|
9 |
+
InstructorEmbedding
|
worker.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from langchain.chains import RetrievalQA
|
3 |
-
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.vectorstores import Chroma
|
7 |
-
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
-
# import pip
|
9 |
-
|
10 |
-
# def install(package):
|
11 |
-
# if hasattr(pip, 'main'):
|
12 |
-
# pip.main(['install', package])
|
13 |
-
# else:
|
14 |
-
# pip._internal.main(['install', package])
|
15 |
-
|
16 |
-
# # Temporal fix for incompatibility between langchain_huggingface and sentence-transformers<2.6
|
17 |
-
# install("sentence-transformers==2.2.2")
|
18 |
-
|
19 |
-
# Check for GPU availability and set the appropriate device for computation.
|
20 |
-
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
21 |
-
# DEVICE = "cpu"
|
22 |
-
|
23 |
-
# Global variables
|
24 |
-
conversation_retrieval_chain = None
|
25 |
-
chat_history = []
|
26 |
-
llm_hub = None
|
27 |
-
embeddings = None
|
28 |
-
|
29 |
-
# Function to initialize the language model and its embeddings
|
30 |
-
def init_llm():
|
31 |
-
global llm_hub, embeddings
|
32 |
-
# Set up the environment variable for HuggingFace and initialize the desired model.
|
33 |
-
# tokenfile = open("api_token.txt")
|
34 |
-
# api_token = tokenfile.readline().replace("\n","")
|
35 |
-
# tokenfile.close()
|
36 |
-
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
37 |
-
|
38 |
-
# repo name for the model
|
39 |
-
# model_id = "tiiuae/falcon-7b-instruct"
|
40 |
-
model_id = "microsoft/Phi-3.5-mini-instruct"
|
41 |
-
# model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
42 |
-
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
43 |
-
|
44 |
-
# load the model into the HuggingFaceHub
|
45 |
-
llm_hub = HuggingFaceEndpoint(repo_id=model_id, temperature=0.1, max_new_tokens=600, model_kwargs={"max_length":600})
|
46 |
-
llm_hub.client.api_url = 'https://api-inference.huggingface.co/models/'+model_id
|
47 |
-
# llm_hub.invoke('foo bar')
|
48 |
-
|
49 |
-
#Initialize embeddings using a pre-trained model to represent the text data.
|
50 |
-
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
51 |
-
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
52 |
-
|
53 |
-
embeddings = HuggingFaceInstructEmbeddings(
|
54 |
-
model_name=embedddings_model,
|
55 |
-
model_kwargs={"device": DEVICE}
|
56 |
-
)
|
57 |
-
|
58 |
-
|
59 |
-
# Function to process a PDF document
|
60 |
-
def process_document(document_path):
|
61 |
-
global conversation_retrieval_chain
|
62 |
-
|
63 |
-
# Load the document
|
64 |
-
loader = PyPDFLoader(document_path)
|
65 |
-
documents = loader.load()
|
66 |
-
|
67 |
-
# Split the document into chunks
|
68 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
69 |
-
texts = text_splitter.split_documents(documents)
|
70 |
-
|
71 |
-
# Create an embeddings database using Chroma from the split text chunks.
|
72 |
-
db = Chroma.from_documents(texts, embedding=embeddings)
|
73 |
-
|
74 |
-
|
75 |
-
# --> Build the QA chain, which utilizes the LLM and retriever for answering questions.
|
76 |
-
# By default, the vectorstore retriever uses similarity search.
|
77 |
-
# If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type (search_type="mmr").
|
78 |
-
# You can also specify search kwargs like k to use when doing retrieval. k represent how many search results send to llm
|
79 |
-
retriever = db.as_retriever(search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25})
|
80 |
-
conversation_retrieval_chain = RetrievalQA.from_chain_type(
|
81 |
-
llm=llm_hub,
|
82 |
-
chain_type="stuff",
|
83 |
-
retriever=retriever,
|
84 |
-
return_source_documents=False,
|
85 |
-
input_key = "question"
|
86 |
-
# chain_type_kwargs={"prompt": prompt} # if you are using prompt template, you need to uncomment this part
|
87 |
-
)
|
88 |
-
|
89 |
-
|
90 |
-
# Function to process a user prompt
|
91 |
-
def process_prompt(prompt, chat_history):
|
92 |
-
global conversation_retrieval_chain
|
93 |
-
# global chat_history
|
94 |
-
|
95 |
-
# Query the model
|
96 |
-
output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
|
97 |
-
answer = output["result"]
|
98 |
-
|
99 |
-
# Update the chat history
|
100 |
-
chat_history.append((prompt, answer))
|
101 |
-
|
102 |
-
# Return the model's response
|
103 |
-
return answer
|
104 |
-
|
105 |
-
# Initialize the language model
|
106 |
-
init_llm()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|