File size: 8,750 Bytes
58486c5
43ac004
bd70403
 
43ac004
bd70403
 
43ac004
 
 
be000a3
43ac004
bd70403
 
 
43ac004
 
bd70403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ac004
bd70403
 
 
 
 
43ac004
 
bd70403
43ac004
be000a3
 
43ac004
 
bd70403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ac004
 
 
 
 
 
 
 
 
bd70403
 
43ac004
 
 
 
 
 
 
bd70403
43ac004
bd70403
43ac004
 
 
bd70403
43ac004
 
 
 
 
 
 
bd70403
43ac004
 
bd70403
43ac004
 
 
 
bd70403
 
 
 
 
 
 
 
 
 
 
 
 
43ac004
 
bd70403
43ac004
 
bd70403
 
 
 
43ac004
bd70403
 
43ac004
bd70403
43ac004
 
 
bd70403
 
 
43ac004
bd70403
43ac004
 
bd70403
 
 
43ac004
 
 
bd70403
43ac004
bd70403
 
43ac004
bd70403
43ac004
 
bd70403
43ac004
 
bd70403
43ac004
 
bd70403
43ac004
 
 
 
 
74f5196
bd70403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb8f33a
bd70403
cb8f33a
43ac004
bd70403
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import os
from bs4 import BeautifulSoup
import requests
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain.schema import Document

# Initialize environment
api_token =os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

def scrape_website(url):
    """Scrape text content from a website"""
    try:
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')
        
        for script in soup(["script", "style"]):
            script.decompose()
            
        text = soup.get_text()
        lines = (line.strip() for line in text.splitlines())
        chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
        text = ' '.join(chunk for chunk in chunks if chunk)
        
        return text
    except Exception as e:
        return f"Error scraping website: {str(e)}"

def process_text(text):
    """Split text into chunks"""
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1024,
        chunk_overlap=64
    )
    chunks = text_splitter.split_text(text)
    return chunks

def create_db(splits):
    """Create vector database"""
    embeddings = HuggingFaceEmbeddings()
    documents = [Document(page_content=text, metadata={}) for text in splits]
    vectordb = FAISS.from_documents(documents, embeddings)
    return vectordb

def initialize_database(url, progress=gr.Progress()):
    """Initialize database from URL"""
    # Scrape website content
    text_content = scrape_website(url)
    if text_content.startswith("Error"):
        return None, text_content
    
    # Create text chunks
    doc_splits = process_text(text_content)
    
    # Create vector database
    vector_db = create_db(doc_splits)
    return vector_db, "Database created successfully!"

def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
    """Initialize LLM chain"""
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
    )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=vector_db.as_retriever(),
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    """Initialize LLM with selected options"""
    llm_name = list_llm[llm_option]
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
    return qa_chain, "QA chain initialized. Chatbot is ready!"

def format_chat_history(message, chat_history):
    """Format chat history for the model"""
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    """Handle conversation with the model"""
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    
    response_sources = response["source_documents"][:3]
    sources = []
    for i in range(3):
        if i < len(response_sources):
            sources.append((response_sources[i].page_content.strip(), 1))
        else:
            sources.append(("", 1))
    
    new_history = history + [(message, response_answer)]
    return (qa_chain, gr.update(value=""), new_history, 
            sources[0][0], sources[0][1],
            sources[1][0], sources[1][1],
            sources[2][0], sources[2][1])

def demo():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        
        gr.HTML("<center><h1>RAG Website Chatbot</h1></center>")
        gr.Markdown("""<b>Query any website content!</b> This AI agent performs retrieval augmented generation (RAG) on website content.""")
        
        with gr.Row():
            with gr.Column(scale=86):
                gr.Markdown("<b>Step 1 - Enter Website URL and Initialize RAG pipeline</b>")
                with gr.Row():
                    url_input = gr.Textbox(label="Website URL", placeholder="Enter website URL here...")
                with gr.Row():
                    db_btn = gr.Button("Create vector database")
                with gr.Row():
                    db_progress = gr.Textbox(value="Not initialized", show_label=False)
                
                gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
                with gr.Row():
                    llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
                with gr.Row():
                    with gr.Accordion("LLM input parameters", open=False):
                        slider_temperature = gr.Slider(0.01, 1.0, 0.5, step=0.1, label="Temperature")
                        slider_maxtokens = gr.Slider(128, 9192, 4096, step=128, label="Max New Tokens")
                        slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k")
                with gr.Row():
                    qachain_btn = gr.Button("Initialize Question Answering Chatbot")
                with gr.Row():
                    llm_progress = gr.Textbox(value="Not initialized", show_label=False)

            with gr.Column(scale=200):
                gr.Markdown("<b>Step 2 - Chat about the Website Content</b>")
                chatbot = gr.Chatbot(height=505)
                with gr.Accordion("Relevant context from the source", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                        source1_page = gr.Number(label="Section", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                        source2_page = gr.Number(label="Section", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                        source3_page = gr.Number(label="Section", scale=1)
                with gr.Row():
                    msg = gr.Textbox(placeholder="Ask a question", container=True)
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")

        # Event handlers
        db_btn.click(initialize_database,
                    inputs=[url_input],
                    outputs=[vector_db, db_progress])
        
        qachain_btn.click(initialize_LLM,
                         inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
                         outputs=[qa_chain, llm_progress])
        
        msg.submit(conversation,
                  inputs=[qa_chain, msg, chatbot],
                  outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
                          doc_source2, source2_page, doc_source3, source3_page])
        
        submit_btn.click(conversation,
                        inputs=[qa_chain, msg, chatbot],
                        outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
                                doc_source2, source2_page, doc_source3, source3_page])
        
        clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
                       inputs=None,
                       outputs=[chatbot, doc_source1, source1_page,
                               doc_source2, source2_page, doc_source3, source3_page])

    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()