Spaces:
Sleeping
Sleeping
File size: 8,750 Bytes
58486c5 43ac004 bd70403 43ac004 bd70403 43ac004 be000a3 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 be000a3 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 bd70403 43ac004 74f5196 bd70403 cb8f33a bd70403 cb8f33a 43ac004 bd70403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import os
from bs4 import BeautifulSoup
import requests
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain.schema import Document
# Initialize environment
api_token =os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def scrape_website(url):
"""Scrape text content from a website"""
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text
except Exception as e:
return f"Error scraping website: {str(e)}"
def process_text(text):
"""Split text into chunks"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
chunks = text_splitter.split_text(text)
return chunks
def create_db(splits):
"""Create vector database"""
embeddings = HuggingFaceEmbeddings()
documents = [Document(page_content=text, metadata={}) for text in splits]
vectordb = FAISS.from_documents(documents, embeddings)
return vectordb
def initialize_database(url, progress=gr.Progress()):
"""Initialize database from URL"""
# Scrape website content
text_content = scrape_website(url)
if text_content.startswith("Error"):
return None, text_content
# Create text chunks
doc_splits = process_text(text_content)
# Create vector database
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully!"
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
"""Initialize LLM chain"""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=vector_db.as_retriever(),
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize LLM with selected options"""
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
"""Format chat history for the model"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
"""Handle conversation with the model"""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"][:3]
sources = []
for i in range(3):
if i < len(response_sources):
sources.append((response_sources[i].page_content.strip(), 1))
else:
sources.append(("", 1))
new_history = history + [(message, response_answer)]
return (qa_chain, gr.update(value=""), new_history,
sources[0][0], sources[0][1],
sources[1][0], sources[1][1],
sources[2][0], sources[2][1])
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG Website Chatbot</h1></center>")
gr.Markdown("""<b>Query any website content!</b> This AI agent performs retrieval augmented generation (RAG) on website content.""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Enter Website URL and Initialize RAG pipeline</b>")
with gr.Row():
url_input = gr.Textbox(label="Website URL", placeholder="Enter website URL here...")
with gr.Row():
db_btn = gr.Button("Create vector database")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(0.01, 1.0, 0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(128, 9192, 4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat about the Website Content</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Section", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Section", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Section", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(initialize_database,
inputs=[url_input],
outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress])
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()
|