RAG-web-Chatbot / app.py
Pamudu13's picture
Update app.py
be000a3 verified
import gradio as gr
import os
from bs4 import BeautifulSoup
import requests
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
from langchain.schema import Document
# Initialize environment
api_token =os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def scrape_website(url):
"""Scrape text content from a website"""
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text
except Exception as e:
return f"Error scraping website: {str(e)}"
def process_text(text):
"""Split text into chunks"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
chunks = text_splitter.split_text(text)
return chunks
def create_db(splits):
"""Create vector database"""
embeddings = HuggingFaceEmbeddings()
documents = [Document(page_content=text, metadata={}) for text in splits]
vectordb = FAISS.from_documents(documents, embeddings)
return vectordb
def initialize_database(url, progress=gr.Progress()):
"""Initialize database from URL"""
# Scrape website content
text_content = scrape_website(url)
if text_content.startswith("Error"):
return None, text_content
# Create text chunks
doc_splits = process_text(text_content)
# Create vector database
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully!"
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
"""Initialize LLM chain"""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=vector_db.as_retriever(),
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""Initialize LLM with selected options"""
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain, "QA chain initialized. Chatbot is ready!"
def format_chat_history(message, chat_history):
"""Format chat history for the model"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
"""Handle conversation with the model"""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"][:3]
sources = []
for i in range(3):
if i < len(response_sources):
sources.append((response_sources[i].page_content.strip(), 1))
else:
sources.append(("", 1))
new_history = history + [(message, response_answer)]
return (qa_chain, gr.update(value=""), new_history,
sources[0][0], sources[0][1],
sources[1][0], sources[1][1],
sources[2][0], sources[2][1])
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG Website Chatbot</h1></center>")
gr.Markdown("""<b>Query any website content!</b> This AI agent performs retrieval augmented generation (RAG) on website content.""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Enter Website URL and Initialize RAG pipeline</b>")
with gr.Row():
url_input = gr.Textbox(label="Website URL", placeholder="Enter website URL here...")
with gr.Row():
db_btn = gr.Button("Create vector database")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(0.01, 1.0, 0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(128, 9192, 4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(1, 10, 3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
with gr.Row():
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat about the Website Content</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Section", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Section", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Section", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(initialize_database,
inputs=[url_input],
outputs=[vector_db, db_progress])
qachain_btn.click(initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress])
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page,
doc_source2, source2_page, doc_source3, source3_page])
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()