Spaces:
Runtime error
Runtime error
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import accuracy_score | |
from time import time | |
def random_forest_train(): | |
# Importing the dataset | |
dataset = pd.read_csv('Breast Cancer Data.csv') | |
X = dataset.iloc[:, 2:32].values | |
y = dataset.iloc[:, 1].values | |
# Encoding categorical data | |
from sklearn.preprocessing import LabelEncoder, OneHotEncoder | |
labelencoder_X_1 = LabelEncoder() | |
y = labelencoder_X_1.fit_transform(y) | |
# Splitting the dataset into the Training set and Test set | |
global X_test, y_test | |
from sklearn.model_selection import train_test_split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) | |
# Feature Scaling | |
from sklearn.preprocessing import StandardScaler | |
global sc | |
sc = StandardScaler() | |
X_train = sc.fit_transform(X_train) | |
X_test = sc.transform(X_test) | |
clf = RandomForestClassifier(n_estimators=100) | |
clf.fit(X_train, y_train) | |
return clf | |
def randorm_forest_test(clf): | |
t = time() | |
output = clf.predict(X_test) | |
acc = accuracy_score(y_test, output) | |
print("The accuracy of testing data: ",acc) | |
print("The running time: ",time()-t) | |
def random_forest_predict(clf, inp): | |
t = time() | |
inp = sc.transform(inp) | |
output = clf.predict(inp) | |
acc = clf.predict_proba(inp) | |
print("The running time: ",time()-t) | |
return output, acc, time()-t; |