Spaces:
Sleeping
Sleeping
File size: 6,964 Bytes
e9f296d e98171a ceec2de e98171a e9f296d f69bb10 308a95d e9f296d a4ba217 e9f296d f69bb10 e9f296d 7ba02d6 f69bb10 e9f296d 7ba02d6 e9f296d f69bb10 e9f296d f69bb10 e9f296d 308a95d e9f296d a4ba217 e9f296d 7ba02d6 0096c75 e9f296d 308a95d 3f8d675 308a95d e9f296d f69bb10 e9f296d a4ba217 e9f296d f69bb10 e9f296d f69bb10 e9f296d 7b824e3 308a95d e9f296d 308a95d e9f296d f69bb10 e9f296d 4b4284a e9f296d f69bb10 e9f296d 4b4284a e9f296d 4b4284a e9f296d f69bb10 e9f296d f69bb10 e9f296d f69bb10 e9f296d d45c28a e9f296d f69bb10 e9f296d f69bb10 e9f296d 7b824e3 a4ba217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==4.44.1")
from threading import Thread
from typing import Iterator
import gradio as gr
from langfuse import Langfuse
from langfuse.decorators import observe
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import time
from utils import load_list_from_json
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Dorna2-Llama3.1-8B-Instruct Chat
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width: 80%; max-width: 550px; height: auto; opacity: 0.80; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Dorna2-Llama3.1-8B-Instruct</h1>
</div>
"""
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
font-family: 'Vazirmatn', sans-serif !important;
}
._button {
font-size: 20px;
}
pre, code {
direction: ltr !important;
unicode-bidi: plaintext !important;
}
"""
system_prompt = str(os.getenv("SYSTEM_PROMPT"))
secret_key = str(os.getenv("LANGFUSE_SECRET_KEY"))
public_key = str(os.getenv("LANGFUSE_PUBLIC_KEY"))
host = str(os.getenv("LANGFUSE_HOST"))
langfuse = Langfuse(
secret_key=secret_key,
public_key=public_key,
host=host
)
REJECTED_VOCAB = load_list_from_json("rejected_vocab_extended.json")
def execution_time_calculator(start_time, log=True):
delta = time.time() - start_time
if log:
print("--- %s seconds ---" % (delta))
return delta
def token_per_second_calculator(tokens_count, time_delta):
return tokens_count/time_delta
if not torch.cuda.is_available():
DESCRIPTION = "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "PartAI/Dorna2-Llama3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_speed = 0
def get_generation_speed():
global generation_speed
return generation_speed
@observe()
def log_to_langfuse(message, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty, do_sample, generation_speed, model_outputs):
print(f"generation_speed: {generation_speed}")
return "".join(model_outputs)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
do_sample: bool =True,
) -> Iterator[str]:
global generation_speed
global system_prompt
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
bad_words_ids=REJECTED_VOCAB,
)
start_time = time.time()
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
sum_tokens = 0
for text in streamer:
num_tokens = len(tokenizer.tokenize(text))
sum_tokens += num_tokens
outputs.append(text)
yield "".join(outputs)
time_delta = execution_time_calculator(start_time, log=False)
generation_speed = token_per_second_calculator(sum_tokens, time_delta)
log_function = log_to_langfuse(
message=message,
chat_history=chat_history,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
generation_speed=generation_speed,
model_outputs=outputs,
)
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1, show_copy_button=True, height="68%", rtl=True) #, elem_classes=["chatbot"])
chat_input = gr.Textbox(show_label=False, lines=2, rtl=True, placeholder="ورودی", show_copy_button=True, scale=4)
submit_btn = gr.Button(variant="primary", value="ارسال", size="sm", scale=1, elem_classes=["_button"])
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs_accordion=gr.Accordion(label="ورودیهای اضافی", open=False),
additional_inputs=[
gr.Slider(
label="حداکثر تعداد توکن ها",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.01,
maximum=4.0,
step=0.01,
value=0.5,
),
gr.Slider(
label="Top-p",
minimum=0.05,
maximum=1.0,
step=0.01,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=20,
),
gr.Slider(
label="جریمه تکرار",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
gr.Dropdown(
label="نمونهگیری",
choices=[False, True],
value=True)
],
stop_btn="توقف",
chatbot=chatbot,
textbox=chat_input,
submit_btn=submit_btn,
retry_btn="🔄 تلاش مجدد",
undo_btn="↩️ بازگشت",
clear_btn="🗑️ پاک کردن",
title="درنا، محصول مرکز تحقیقات هوش مصنوعی پارت"
)
with gr.Blocks(css=custom_css, fill_height=False) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|