File size: 7,756 Bytes
d8c3a88 d2e3c7f 4277202 d2e3c7f 6c5c0ad 6a6fbcd d2e3c7f d43bb1b 75fd4bb 4b219d0 4277202 633ac28 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 75fd4bb 6a6fbcd 4277202 6a6fbcd d2e3c7f 75fd4bb 1e82c8e 75fd4bb 355b657 d2e3c7f 75fd4bb 3f31c68 ccff99d 75fd4bb ccff99d 5e8e8f0 d2e3c7f 7f36a98 75fd4bb 7f36a98 75fd4bb 7f36a98 75fd4bb 7f36a98 75fd4bb 7f36a98 75fd4bb f8d8d78 d2e3c7f ccff99d 75fd4bb ccff99d 75fd4bb 6a6fbcd 75fd4bb d2e3c7f 75fd4bb 6a6fbcd 75fd4bb 7f36a98 75fd4bb 7f36a98 ff0e62c 6a6fbcd ccff99d d2e3c7f 8af0aff 4277202 8af0aff d2e3c7f 8af0aff 4277202 8af0aff d2e3c7f f74eb2e ccff99d f74eb2e 6a6fbcd d2e3c7f 6a6fbcd d2e3c7f 5e8e8f0 d2e3c7f 6a6fbcd d2e3c7f 6a6fbcd 5e8e8f0 d2e3c7f 7f36a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import gradio as gr
import logging
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from PyPDF2 import PdfReader
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ResponseStructureSelector:
def __init__(self, llm):
self.llm = llm
self.structure_prompt = PromptTemplate(
input_variables=['context', 'query'],
template="""Analyze the context and query to determine the most appropriate response structure:
Context: {context}
Query: {query}
Select the optimal response format:
1. Markdown with bullet points and headlines
2. Concise paragraph with key insights
3. Numbered list with detailed explanations
4. Technical breakdown with subheadings
5. Quick summary with critical points
Choose the number (1-5) of the most suitable format:"""
)
self.structure_chain = LLMChain(llm=self.llm, prompt=self.structure_prompt)
def select_structure(self, context, query):
try:
structure_choice = self.structure_chain.run({'context': context, 'query': query})
return int(structure_choice.strip())
except:
return 1 # Default to Markdown structure
class QueryRefiner:
def __init__(self, llm):
self.refinement_llm = llm
self.refinement_prompt = PromptTemplate(
input_variables=['query', 'context'],
template="""Refine query for clarity and precision:
Original Query: {query}
Document Context: {context}
Refined, Focused Query:"""
)
self.refinement_chain = LLMChain(llm=self.refinement_llm, prompt=self.refinement_prompt)
def refine_query(self, original_query, context_hints=''):
try:
return self.refinement_chain.run({
'query': original_query,
'context': context_hints or "General document"
}).strip()
except Exception as e:
logger.error(f"Query refinement error: {e}")
return original_query
class AdvancedPdfChatbot:
def __init__(self, openai_api_key):
os.environ["OPENAI_API_KEY"] = openai_api_key
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o', max_tokens=1000)
self.embeddings = OpenAIEmbeddings()
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100)
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
self.query_refiner = QueryRefiner(self.llm)
self.response_selector = ResponseStructureSelector(self.llm)
self.db = None
self.chain = None
self.document_metadata = {}
def _create_response_prompt(self, structure_choice):
structure_templates = {
1: """Markdown Response with Structured Insights:
## {title}
### Key Highlights
{content}
### Conclusion
{conclusion}""",
2: """{title}: {content}. Key Takeaway: {conclusion}""",
3: """Structured Breakdown:
1. {title}
- Main Point: {content}
2. Implications
- {conclusion}""",
4: """Technical Analysis
## {title}
### Core Concept
{content}
### Technical Implications
{conclusion}""",
5: """Concise Summary: {title}. Key Points: {content}. Conclusion: {conclusion}."""
}
return PromptTemplate(
template=structure_templates.get(structure_choice, structure_templates[1]),
input_variables=["title", "content", "conclusion"]
)
def load_and_process_pdf(self, pdf_path):
try:
# Extract PDF metadata
reader = PdfReader(pdf_path)
self.document_metadata = {
"title": reader.metadata.get("/Title", "Untitled Document"),
"author": reader.metadata.get("/Author", "Unknown")
}
# Load and process PDF
loader = PyPDFLoader(pdf_path)
documents = loader.load()
texts = self.text_splitter.split_documents(documents)
# Create vector store with fewer documents to improve performance
self.db = FAISS.from_documents(texts[:30], self.embeddings)
# Setup conversational chain
self.chain = ConversationalRetrievalChain.from_llm(
llm=self.llm,
retriever=self.db.as_retriever(search_kwargs={"k": 3}),
memory=self.memory
)
return True
except Exception as e:
logger.error(f"PDF processing error: {e}")
return False
def chat(self, query):
if not self.chain:
return "Upload a PDF first."
# Refine query
context = f"Document: {self.document_metadata.get('title', 'Unknown')}"
refined_query = self.query_refiner.refine_query(query, context)
# Select response structure
structure_choice = self.response_selector.select_structure(context, refined_query)
# Perform retrieval and answer generation
result = self.chain({"question": refined_query})
return result['answer']
# Gradio Interface (remains mostly the same)
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
def upload_pdf(pdf_file):
if not pdf_file:
return "Upload a PDF file."
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
return "PDF processed successfully" if pdf_chatbot.load_and_process_pdf(file_path) else "Processing failed"
def respond(message, history):
try:
bot_message = pdf_chatbot.chat(message)
history.append((message, bot_message))
return "", history
except Exception as e:
return f"Error: {e}", history
# Gradio Interface
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
def upload_pdf(pdf_file):
if pdf_file is None:
return "Please upload a PDF file."
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
try:
pdf_chatbot.load_and_process_pdf(file_path)
return f"PDF processed successfully: {file_path}"
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"Error processing PDF: {str(e)}"
def respond(message, history):
if not message:
return "", history
try:
bot_message = pdf_chatbot.chat(message)
history.append((message, bot_message))
return "", history
except Exception as e:
logger.error(f"Chat response error: {e}")
return f"Error: {str(e)}", history
def clear_chatbot():
pdf_chatbot.clear_memory()
return []
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Advanced PDF Chatbot")
with gr.Row():
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
upload_button = gr.Button("Process PDF")
upload_status = gr.Textbox(label="Upload Status")
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
chatbot_interface = gr.Chatbot()
msg = gr.Textbox(placeholder="Enter your query...")
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
clear_button = gr.Button("Clear Conversation")
clear_button.click(clear_chatbot, outputs=[chatbot_interface])
if __name__ == "__main__":
demo.launch()
|