Update app.py
Browse files
app.py
CHANGED
@@ -11,147 +11,113 @@ from langchain.memory import ConversationBufferMemory
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from PyPDF2 import PdfReader
|
13 |
|
14 |
-
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
-
|
17 |
-
class ResponseStructureSelector:
|
18 |
def __init__(self, llm):
|
19 |
self.llm = llm
|
20 |
-
self.
|
21 |
-
input_variables=['context', 'query'],
|
22 |
-
template="""Analyze the context and
|
|
|
23 |
Context: {context}
|
24 |
Query: {query}
|
|
|
25 |
|
26 |
-
|
27 |
-
1.
|
28 |
-
2. Concise
|
29 |
-
3.
|
30 |
-
4.
|
31 |
-
5.
|
32 |
|
33 |
-
Choose the
|
34 |
)
|
35 |
-
self.
|
36 |
|
37 |
-
def
|
38 |
try:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
Document Context: {context}
|
52 |
-
Refined, Focused Query:"""
|
53 |
-
)
|
54 |
-
self.refinement_chain = LLMChain(llm=self.refinement_llm, prompt=self.refinement_prompt)
|
55 |
-
|
56 |
-
def refine_query(self, original_query, context_hints=''):
|
57 |
-
try:
|
58 |
-
return self.refinement_chain.run({
|
59 |
-
'query': original_query,
|
60 |
-
'context': context_hints or "General document"
|
61 |
-
}).strip()
|
62 |
except Exception as e:
|
63 |
-
|
64 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
class AdvancedPdfChatbot:
|
67 |
def __init__(self, openai_api_key):
|
68 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
69 |
-
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o'
|
70 |
|
71 |
self.embeddings = OpenAIEmbeddings()
|
72 |
-
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
73 |
|
74 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
75 |
-
self.
|
76 |
-
self.response_selector = ResponseStructureSelector(self.llm)
|
77 |
|
78 |
self.db = None
|
79 |
-
self.
|
80 |
-
self.document_metadata = {}
|
81 |
-
|
82 |
-
def _create_response_prompt(self, structure_choice):
|
83 |
-
structure_templates = {
|
84 |
-
1: """Markdown Response with Structured Insights:
|
85 |
-
## {title}
|
86 |
-
### Key Highlights
|
87 |
-
{content}
|
88 |
-
### Conclusion
|
89 |
-
{conclusion}""",
|
90 |
-
2: """{title}: {content}. Key Takeaway: {conclusion}""",
|
91 |
-
3: """Structured Breakdown:
|
92 |
-
1. {title}
|
93 |
-
- Main Point: {content}
|
94 |
-
2. Implications
|
95 |
-
- {conclusion}""",
|
96 |
-
4: """Technical Analysis
|
97 |
-
## {title}
|
98 |
-
### Core Concept
|
99 |
-
{content}
|
100 |
-
### Technical Implications
|
101 |
-
{conclusion}""",
|
102 |
-
5: """Concise Summary: {title}. Key Points: {content}. Conclusion: {conclusion}."""
|
103 |
-
}
|
104 |
-
return PromptTemplate(
|
105 |
-
template=structure_templates.get(structure_choice, structure_templates[1]),
|
106 |
-
input_variables=["title", "content", "conclusion"]
|
107 |
-
)
|
108 |
|
109 |
def load_and_process_pdf(self, pdf_path):
|
110 |
try:
|
111 |
-
# Extract PDF metadata
|
112 |
reader = PdfReader(pdf_path)
|
113 |
-
|
114 |
-
"title": reader.metadata.get("/Title", "Untitled
|
115 |
"author": reader.metadata.get("/Author", "Unknown")
|
116 |
}
|
117 |
-
|
118 |
-
# Load and process PDF
|
119 |
loader = PyPDFLoader(pdf_path)
|
120 |
documents = loader.load()
|
121 |
texts = self.text_splitter.split_documents(documents)
|
122 |
|
123 |
-
|
124 |
-
self.
|
125 |
-
|
126 |
-
# Setup conversational chain
|
127 |
-
self.chain = ConversationalRetrievalChain.from_llm(
|
128 |
-
llm=self.llm,
|
129 |
-
retriever=self.db.as_retriever(search_kwargs={"k": 3}),
|
130 |
-
memory=self.memory
|
131 |
-
)
|
132 |
|
133 |
return True
|
134 |
except Exception as e:
|
135 |
-
|
136 |
return False
|
137 |
|
138 |
def chat(self, query):
|
139 |
-
if not self.
|
140 |
-
return "
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
refined_query = self.query_refiner.refine_query(query, context)
|
145 |
|
146 |
-
#
|
147 |
-
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
#
|
150 |
-
|
151 |
|
152 |
-
return
|
153 |
|
154 |
-
# Gradio Interface
|
155 |
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|
156 |
|
157 |
def upload_pdf(pdf_file):
|
@@ -168,36 +134,6 @@ def respond(message, history):
|
|
168 |
except Exception as e:
|
169 |
return f"Error: {e}", history
|
170 |
|
171 |
-
|
172 |
-
# Gradio Interface
|
173 |
-
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|
174 |
-
|
175 |
-
def upload_pdf(pdf_file):
|
176 |
-
if pdf_file is None:
|
177 |
-
return "Please upload a PDF file."
|
178 |
-
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file
|
179 |
-
try:
|
180 |
-
pdf_chatbot.load_and_process_pdf(file_path)
|
181 |
-
return f"PDF processed successfully: {file_path}"
|
182 |
-
except Exception as e:
|
183 |
-
logger.error(f"PDF processing error: {e}")
|
184 |
-
return f"Error processing PDF: {str(e)}"
|
185 |
-
|
186 |
-
def respond(message, history):
|
187 |
-
if not message:
|
188 |
-
return "", history
|
189 |
-
try:
|
190 |
-
bot_message = pdf_chatbot.chat(message)
|
191 |
-
history.append((message, bot_message))
|
192 |
-
return "", history
|
193 |
-
except Exception as e:
|
194 |
-
logger.error(f"Chat response error: {e}")
|
195 |
-
return f"Error: {str(e)}", history
|
196 |
-
|
197 |
-
def clear_chatbot():
|
198 |
-
pdf_chatbot.clear_memory()
|
199 |
-
return []
|
200 |
-
|
201 |
# Gradio UI
|
202 |
with gr.Blocks() as demo:
|
203 |
gr.Markdown("# Advanced PDF Chatbot")
|
@@ -207,11 +143,10 @@ with gr.Blocks() as demo:
|
|
207 |
|
208 |
upload_status = gr.Textbox(label="Upload Status")
|
209 |
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
|
|
|
210 |
chatbot_interface = gr.Chatbot()
|
211 |
msg = gr.Textbox(placeholder="Enter your query...")
|
212 |
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
|
213 |
-
clear_button = gr.Button("Clear Conversation")
|
214 |
-
clear_button.click(clear_chatbot, outputs=[chatbot_interface])
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
-
demo.launch()
|
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from PyPDF2 import PdfReader
|
13 |
|
14 |
+
class ContextAwareResponseGenerator:
|
|
|
|
|
|
|
15 |
def __init__(self, llm):
|
16 |
self.llm = llm
|
17 |
+
self.response_prompt = PromptTemplate(
|
18 |
+
input_variables=['context', 'query', 'chat_history'],
|
19 |
+
template="""Analyze the context, query, and chat history to generate an optimal response:
|
20 |
+
|
21 |
Context: {context}
|
22 |
Query: {query}
|
23 |
+
Chat History: {chat_history}
|
24 |
|
25 |
+
Response Structure Selection Criteria:
|
26 |
+
1. Technical academic breakdown
|
27 |
+
2. Concise summary with key points
|
28 |
+
3. Markdown with hierarchical insights
|
29 |
+
4. Narrative explanation
|
30 |
+
5. Comparative analysis
|
31 |
|
32 |
+
Choose the most appropriate response structure (1-5) and generate the response accordingly:"""
|
33 |
)
|
34 |
+
self.response_chain = LLMChain(llm=self.llm, prompt=self.response_prompt)
|
35 |
|
36 |
+
def generate_response(self, context, query, chat_history=''):
|
37 |
try:
|
38 |
+
# Generate structured response
|
39 |
+
response = self.response_chain.run({
|
40 |
+
'context': context,
|
41 |
+
'query': query,
|
42 |
+
'chat_history': chat_history or "No previous context"
|
43 |
+
})
|
44 |
+
|
45 |
+
# Parse the response to extract structure and content
|
46 |
+
structure_choice = int(response[0]) if response[0].isdigit() else 1
|
47 |
+
response_content = response[1:].strip()
|
48 |
+
|
49 |
+
return self._format_response(structure_choice, response_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
+
logging.error(f"Response generation error: {e}")
|
52 |
+
return self._default_response(query)
|
53 |
+
|
54 |
+
def _format_response(self, structure_choice, content):
|
55 |
+
structures = {
|
56 |
+
1: f"## Technical Breakdown\n{content}",
|
57 |
+
2: f"📍 Key Insights:\n{content}",
|
58 |
+
3: f"### Structured Insights\n{content}",
|
59 |
+
4: f"🔍 Narrative Explanation:\n{content}",
|
60 |
+
5: f"🔬 Comparative Analysis:\n{content}"
|
61 |
+
}
|
62 |
+
return structures.get(structure_choice, structures[1])
|
63 |
+
|
64 |
+
def _default_response(self, query):
|
65 |
+
return f"I couldn't generate a structured response for: {query}"
|
66 |
|
67 |
class AdvancedPdfChatbot:
|
68 |
def __init__(self, openai_api_key):
|
69 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
70 |
+
self.llm = ChatOpenAI(temperature=0.2, model_name='gpt-4o')
|
71 |
|
72 |
self.embeddings = OpenAIEmbeddings()
|
73 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
74 |
|
75 |
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
76 |
+
self.response_generator = ContextAwareResponseGenerator(self.llm)
|
|
|
77 |
|
78 |
self.db = None
|
79 |
+
self.document_context = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
def load_and_process_pdf(self, pdf_path):
|
82 |
try:
|
|
|
83 |
reader = PdfReader(pdf_path)
|
84 |
+
metadata = {
|
85 |
+
"title": reader.metadata.get("/Title", "Untitled"),
|
86 |
"author": reader.metadata.get("/Author", "Unknown")
|
87 |
}
|
88 |
+
|
|
|
89 |
loader = PyPDFLoader(pdf_path)
|
90 |
documents = loader.load()
|
91 |
texts = self.text_splitter.split_documents(documents)
|
92 |
|
93 |
+
self.db = FAISS.from_documents(texts[:50], self.embeddings)
|
94 |
+
self.document_context = f"Document: {metadata['title']} by {metadata['author']}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
return True
|
97 |
except Exception as e:
|
98 |
+
logging.error(f"PDF processing error: {e}")
|
99 |
return False
|
100 |
|
101 |
def chat(self, query):
|
102 |
+
if not self.db:
|
103 |
+
return "Please upload a PDF first."
|
104 |
|
105 |
+
# Retrieve chat history
|
106 |
+
chat_history = self.memory.load_memory_variables({}).get('chat_history', [])
|
|
|
107 |
|
108 |
+
# Generate context-aware response
|
109 |
+
response = self.response_generator.generate_response(
|
110 |
+
context=self.document_context,
|
111 |
+
query=query,
|
112 |
+
chat_history=str(chat_history)
|
113 |
+
)
|
114 |
|
115 |
+
# Store conversation in memory
|
116 |
+
self.memory.save_context({"input": query}, {"output": response})
|
117 |
|
118 |
+
return response
|
119 |
|
120 |
+
# Gradio Interface
|
121 |
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY"))
|
122 |
|
123 |
def upload_pdf(pdf_file):
|
|
|
134 |
except Exception as e:
|
135 |
return f"Error: {e}", history
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
# Gradio UI
|
138 |
with gr.Blocks() as demo:
|
139 |
gr.Markdown("# Advanced PDF Chatbot")
|
|
|
143 |
|
144 |
upload_status = gr.Textbox(label="Upload Status")
|
145 |
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status])
|
146 |
+
|
147 |
chatbot_interface = gr.Chatbot()
|
148 |
msg = gr.Textbox(placeholder="Enter your query...")
|
149 |
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface])
|
|
|
|
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
+
demo.launch()
|