|
import os |
|
import gradio as gr |
|
import logging |
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.chains import ConversationalRetrievalChain, LLMChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.prompts import PromptTemplate |
|
import concurrent.futures |
|
import timeout_decorator |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class QueryRefiner: |
|
def __init__(self): |
|
self.refinement_llm = ChatOpenAI(temperature=0.2, model_name='gpt-4o') |
|
self.refinement_prompt = PromptTemplate( |
|
input_variables=['query', 'context'], |
|
template="""Refine and enhance the following query for maximum clarity and precision: |
|
|
|
Original Query: {query} |
|
Document Context: {context} |
|
|
|
Enhanced Query Requirements: |
|
- Restructure for optimal comprehension |
|
- rewrite the original query for best comprehension for getting all the details in great attention to details |
|
- Use specific structure and the response be according to context such as paragraphs or bullet points, headlines and subtexts |
|
|
|
Refined Query:""" |
|
) |
|
self.refinement_chain = LLMChain( |
|
llm=self.refinement_llm, |
|
prompt=self.refinement_prompt |
|
) |
|
|
|
|
|
def refine_query(self, original_query, context_hints=''): |
|
try: |
|
refined_query = self.refinement_chain.run({ |
|
'query': original_query, |
|
'context': context_hints or "General academic document" |
|
}) |
|
return refined_query.strip() |
|
except Exception as e: |
|
logger.error(f"Query refinement error: {e}") |
|
return original_query |
|
|
|
class AdvancedPdfChatbot: |
|
def __init__(self, openai_api_key): |
|
os.environ["OPENAI_API_KEY"] = openai_api_key |
|
self.embeddings = OpenAIEmbeddings() |
|
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
self.llm = ChatOpenAI(temperature=0, model_name='gpt-4o') |
|
|
|
self.memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
self.query_refiner = QueryRefiner() |
|
self.db = None |
|
self.chain = None |
|
|
|
self.qa_prompt = PromptTemplate( |
|
template="""You are an expert academic assistant analyzing a document. Provide well structured response in Markdown |
|
|
|
Context: {context} |
|
Question: {question} |
|
|
|
Provide a comprehensive, precise answer based strictly on the document's content. |
|
Use this format: |
|
- Short summary of the response with a relevant title |
|
- Headlines and bullet points with descriptions with breakdowns of each topics and details |
|
- Conclusion |
|
|
|
NOTE: Give precise and short answers when asked about specific terms and summary of specific topic |
|
|
|
If the answer isn't directly available, explain why. """, |
|
input_variables=["context", "question"] |
|
) |
|
|
|
|
|
def load_and_process_pdf(self, pdf_path): |
|
loader = PyPDFLoader(pdf_path) |
|
documents = loader.load() |
|
texts = self.text_splitter.split_documents(documents) |
|
self.db = FAISS.from_documents(texts, self.embeddings) |
|
|
|
self.chain = ConversationalRetrievalChain.from_llm( |
|
llm=self.llm, |
|
retriever=self.db.as_retriever(search_kwargs={"k": 3}), |
|
memory=self.memory, |
|
combine_docs_chain_kwargs={"prompt": self.qa_prompt} |
|
) |
|
|
|
|
|
def chat(self, query): |
|
if not self.chain: |
|
return "Please upload a PDF first." |
|
|
|
context_hints = self._extract_document_type() |
|
refined_query = self.query_refiner.refine_query(query, context_hints) |
|
|
|
result = self.chain({"question": refined_query}) |
|
return result['answer'] |
|
|
|
def _extract_document_type(self): |
|
"""Extract basic document characteristics""" |
|
if not self.db: |
|
return "" |
|
try: |
|
first_doc = list(self.db.docstore._dict.values())[0].page_content[:500] |
|
return f"Document appears to cover: {first_doc[:100]}..." |
|
except: |
|
return "Academic/technical document" |
|
|
|
def clear_memory(self): |
|
self.memory.clear() |
|
|
|
|
|
pdf_chatbot = AdvancedPdfChatbot(os.environ.get("OPENAI_API_KEY")) |
|
|
|
def upload_pdf(pdf_file): |
|
if pdf_file is None: |
|
return "Please upload a PDF file." |
|
file_path = pdf_file.name if hasattr(pdf_file, 'name') else pdf_file |
|
try: |
|
pdf_chatbot.load_and_process_pdf(file_path) |
|
return f"PDF processed successfully: {file_path}" |
|
except Exception as e: |
|
logger.error(f"PDF processing error: {e}") |
|
return f"Error processing PDF: {str(e)}" |
|
|
|
def respond(message, history): |
|
if not message: |
|
return "", history |
|
try: |
|
bot_message = pdf_chatbot.chat(message) |
|
history.append((message, bot_message)) |
|
return "", history |
|
except Exception as e: |
|
logger.error(f"Chat response error: {e}") |
|
return f"Error: {str(e)}", history |
|
|
|
def clear_chatbot(): |
|
pdf_chatbot.clear_memory() |
|
return [] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Advanced PDF Chatbot") |
|
|
|
with gr.Row(): |
|
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) |
|
upload_button = gr.Button("Process PDF") |
|
|
|
upload_status = gr.Textbox(label="Upload Status") |
|
upload_button.click(upload_pdf, inputs=[pdf_upload], outputs=[upload_status]) |
|
|
|
chatbot_interface = gr.Chatbot() |
|
msg = gr.Textbox(placeholder="Enter your query...") |
|
msg.submit(respond, inputs=[msg, chatbot_interface], outputs=[msg, chatbot_interface]) |
|
|
|
clear_button = gr.Button("Clear Conversation") |
|
clear_button.click(clear_chatbot, outputs=[chatbot_interface]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |