File size: 2,949 Bytes
3ec9224 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 6803339 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 5be8df6 5a1fc91 4ce7fc5 9bf736d 5a1fc91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain import hub
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
import os
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "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"
# Global variable to store the RAG chain object
rag_chain = None
def process_url(url):
try:
# Initialize the loader with the specified web path
loader = WebBaseLoader(web_paths=[url])
docs = loader.load()
# Split the documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, add_start_index=True)
all_splits = text_splitter.split_documents(docs)
# Create vectorstore
vectorstore = Chroma.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 2})
# Define the prompt
prompt = hub.pull("rlm/rag-prompt")
# Define the LLM
llm = ChatOpenAI(model="gpt-4")
# Define the RAG chain
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
global rag_chain
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return "Successfully processed the URL. You can now ask questions."
except Exception as e:
return f"Error processing URL: {e}"
def chat_with_rag_chain(message):
global rag_chain
if rag_chain:
try:
response = rag_chain.invoke(message)
return response
except Exception as e:
return f"Error invoking RAG chain: {e}"
else:
return "Please enter a URL first and process it."
# Gradio interface for entering the URL
url_input_interface = gr.Interface(
fn=process_url,
inputs=gr.Textbox(label="Enter URL", placeholder="https://example.com"),
outputs=gr.Textbox(label="Status"),
title="RAG Chain URL Processor",
description="Enter a URL to process the article using a RAG chain model."
)
# Gradio chat interface for Q&A
chat_interface = gr.Interface(
fn=chat_with_rag_chain,
inputs=gr.Textbox(label="Your Question"),
outputs=gr.Textbox(label="Response"),
title="RAG Chain Chat Interface",
description="Chat with the RAG chain model after processing a URL."
)
# Combining the two interfaces in a tab layout
gr.TabbedInterface([url_input_interface, chat_interface], ["URL Processor", "Chat Interface"]).launch(debug=True, share=True)
|