Spaces:
Sleeping
Sleeping
File size: 20,800 Bytes
b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 b34b702 baeff27 33510a5 baeff27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
from datetime import datetime
import json
import numpy as np
from docx import Document
import re
from prompts import SESSION_EVALUATION_PROMPT, MI_SYSTEM_PROMPT
def show_session_analysis():
st.title("MI Session Analysis Dashboard")
# Initialize session state for analysis results
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'current_transcript' not in st.session_state:
st.session_state.current_transcript = None
# Main layout
col1, col2 = st.columns([1, 2])
with col1:
show_upload_section()
with col2:
if st.session_state.analysis_results:
show_analysis_results()
def show_upload_section():
st.header("Session Data Upload")
upload_type = st.radio(
"Select Input Method:",
["Audio Recording", "Video Recording", "Text Transcript", "Session Notes", "Previous Session Data"]
)
if upload_type in ["Audio Recording", "Video Recording"]:
file = st.file_uploader(
f"Upload {upload_type}",
type=["wav", "mp3", "mp4"] if upload_type == "Audio Recording" else ["mp4", "avi", "mov"]
)
if file:
process_media_file(file, upload_type)
elif upload_type == "Text Transcript":
file = st.file_uploader("Upload Transcript", type=["txt", "doc", "docx", "json"])
if file:
process_text_file(file)
elif upload_type == "Session Notes":
show_manual_input_form()
else: # Previous Session Data
show_previous_sessions_selector()
def process_media_file(file, type):
st.write(f"Processing {type}...")
# Add processing status
status = st.empty()
progress_bar = st.progress(0)
try:
# Simulated processing steps
for i in range(5):
status.text(f"Step {i+1}/5: " + get_processing_step_name(i))
progress_bar.progress((i + 1) * 20)
# Generate transcript
transcript = generate_transcript(file)
if transcript:
st.session_state.current_transcript = transcript
analyze_session_content(transcript)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
finally:
status.empty()
progress_bar.empty()
def get_processing_step_name(step):
steps = [
"Loading media file",
"Converting to audio",
"Performing speech recognition",
"Generating transcript",
"Preparing analysis"
]
return steps[step]
def process_text_file(file):
try:
if file.name.endswith('.json'):
content = json.loads(file.read().decode())
transcript = extract_transcript_from_json(content)
elif file.name.endswith('.docx'):
doc = Document(file)
transcript = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
else:
transcript = file.read().decode()
if transcript:
st.session_state.current_transcript = transcript
analyze_session_content(transcript)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
def show_manual_input_form():
st.subheader("Session Details")
# Session metadata
session_date = st.date_input("Session Date", datetime.now())
session_duration = st.number_input("Session Duration (minutes)", min_value=1, max_value=180, value=50)
# Client information
client_id = st.text_input("Client ID (optional)")
session_number = st.number_input("Session Number", min_value=1, value=1)
# Session content
session_notes = st.text_area(
"Session Notes",
height=300,
help="Enter detailed session notes including key dialogues, interventions, and observations"
)
# Target behaviors
target_behaviors = st.text_area(
"Target Behaviors/Goals",
height=100,
help="Enter the specific behaviors or goals discussed in the session"
)
# MI specific elements
st.subheader("MI Elements")
change_talk = st.text_area("Observed Change Talk")
sustain_talk = st.text_area("Observed Sustain Talk")
if st.button("Analyze Session"):
session_data = compile_session_data(
session_date, session_duration, client_id, session_number,
session_notes, target_behaviors, change_talk, sustain_talk
)
analyze_session_content(session_data)
def analyze_session_content(content):
try:
# Configure Gemini model
model = genai.GenerativeModel('gemini-pro')
# Prepare analysis prompt
analysis_prompt = f"""
Analyze the following therapy session using MI principles and provide a comprehensive evaluation:
Session Content:
{content}
Please provide detailed analysis including:
1. MI Adherence Assessment:
- OARS implementation
- Change talk identification
- Resistance management
- MI spirit adherence
2. Technical Skills Evaluation:
- Reflection quality and frequency
- Question-to-reflection ratio
- Open vs. closed questions
- Affirmations and summaries
3. Client Language Analysis:
- Change talk instances
- Sustain talk patterns
- Commitment language
- Resistance patterns
4. Session Flow Analysis:
- Engagement level
- Focus maintenance
- Evocation quality
- Planning effectiveness
5. Recommendations:
- Strength areas
- Growth opportunities
- Suggested interventions
- Next session planning
Format the analysis with clear sections and specific examples from the session.
"""
# Generate analysis
response = model.generate_content(analysis_prompt)
# Process and structure the analysis results
analysis_results = process_analysis_results(response.text)
# Store results in session state
st.session_state.analysis_results = analysis_results
# Show success message
st.success("Analysis completed successfully!")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
def process_analysis_results(raw_analysis):
"""Process and structure the analysis results"""
# Parse the raw analysis text and extract structured data
sections = extract_analysis_sections(raw_analysis)
# Calculate metrics
metrics = calculate_mi_metrics(raw_analysis)
return {
"raw_analysis": raw_analysis,
"structured_sections": sections,
"metrics": metrics,
"timestamp": datetime.now().isoformat()
}
def show_analysis_results():
"""Display comprehensive analysis results"""
if not st.session_state.analysis_results:
return
results = st.session_state.analysis_results
# Top-level metrics
show_mi_metrics_dashboard(results['metrics'])
# Detailed analysis sections
tabs = st.tabs([
"MI Adherence",
"Technical Skills",
"Client Language",
"Session Flow",
"Recommendations"
])
with tabs[0]:
show_mi_adherence_analysis(results)
with tabs[1]:
show_technical_skills_analysis(results)
with tabs[2]:
show_client_language_analysis(results)
with tabs[3]:
show_session_flow_analysis(results)
with tabs[4]:
show_recommendations(results)
def show_mi_metrics_dashboard(metrics):
st.subheader("MI Performance Dashboard")
col1, col2, col3, col4 = st.columns(4)
with col1:
show_metric_card(
"MI Spirit Score",
metrics.get('mi_spirit_score', 0),
"0-5 scale"
)
with col2:
show_metric_card(
"Change Talk Ratio",
metrics.get('change_talk_ratio', 0),
"Change vs Sustain"
)
with col3:
show_metric_card(
"Reflection Ratio",
metrics.get('reflection_ratio', 0),
"Reflections/Questions"
)
with col4:
show_metric_card(
"Overall Adherence",
metrics.get('overall_adherence', 0),
"Percentage"
)
def show_metric_card(title, value, subtitle):
st.markdown(
f"""
<div style="border:1px solid #ccc; padding:10px; border-radius:5px; text-align:center;">
<h3>{title}</h3>
<h2>{value:.2f}</h2>
<p>{subtitle}</p>
</div>
""",
unsafe_allow_html=True
)
def show_mi_adherence_analysis(results):
st.subheader("MI Adherence Analysis")
# OARS Implementation
st.write("### OARS Implementation")
show_oars_chart(results['metrics'].get('oars_metrics', {}))
# MI Spirit Components
st.write("### MI Spirit Components")
show_mi_spirit_chart(results['metrics'].get('mi_spirit_metrics', {}))
# Detailed breakdown
st.write("### Detailed Analysis")
st.markdown(results['structured_sections'].get('mi_adherence', ''))
def show_technical_skills_analysis(results):
st.subheader("Technical Skills Analysis")
# Question Analysis
col1, col2 = st.columns(2)
with col1:
show_question_type_chart(results['metrics'].get('question_metrics', {}))
with col2:
show_reflection_depth_chart(results['metrics'].get('reflection_metrics', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('technical_skills', ''))
def show_client_language_analysis(results):
st.subheader("Client Language Analysis")
# Change Talk Timeline
show_change_talk_timeline(results['metrics'].get('change_talk_timeline', []))
# Language Categories
show_language_categories_chart(results['metrics'].get('language_categories', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('client_language', ''))
def show_session_flow_analysis(results):
st.subheader("Session Flow Analysis")
# Session Flow Timeline
show_session_flow_timeline(results['metrics'].get('session_flow', []))
# Engagement Metrics
show_engagement_metrics(results['metrics'].get('engagement_metrics', {}))
# Detailed analysis
st.markdown(results['structured_sections'].get('session_flow', ''))
def show_recommendations(results):
st.subheader("Recommendations and Next Steps")
col1, col2 = st.columns(2)
with col1:
st.write("### Strengths")
strengths = results['structured_sections'].get('strengths', [])
for strength in strengths:
st.markdown(f"✓ {strength}")
with col2:
st.write("### Growth Areas")
growth_areas = results['structured_sections'].get('growth_areas', [])
for area in growth_areas:
st.markdown(f"→ {area}")
st.write("### Suggested Interventions")
st.markdown(results['structured_sections'].get('suggested_interventions', ''))
st.write("### Next Session Planning")
st.markdown(results['structured_sections'].get('next_session_plan', ''))
# Utility functions for charts and visualizations
def show_oars_chart(oars_metrics):
# Create OARS radar chart using plotly
categories = ['Open Questions', 'Affirmations', 'Reflections', 'Summaries']
values = [
oars_metrics.get('open_questions', 0),
oars_metrics.get('affirmations', 0),
oars_metrics.get('reflections', 0),
oars_metrics.get('summaries', 0)
]
fig = go.Figure(data=go.Scatterpolar(
r=values,
theta=categories,
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(values) + 1]
)),
showlegend=False
)
st.plotly_chart(fig)
# Add more visualization functions as needed...
def save_analysis_results():
"""Save analysis results to file"""
if st.session_state.analysis_results:
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"analysis_results_{timestamp}.json"
with open(filename, "w") as f:
json.dump(st.session_state.analysis_results, f, indent=4)
st.success(f"Analysis results saved to {filename}")
except Exception as e:
st.error(f"Error saving analysis results: {str(e)}")
def show_export_options():
st.sidebar.subheader("Export Options")
if st.sidebar.button("Export Analysis Report"):
save_analysis_results()
report_format = st.sidebar.selectbox(
"Report Format",
["PDF", "DOCX", "JSON"]
)
if st.sidebar.button("Generate Report"):
generate_report(report_format)
def generate_report(format):
"""Generate analysis report in specified format"""
# Add report generation logic here
st.info(f"Generating {format} report... (Feature coming soon)")
def show_previous_sessions_selector():
"""Display selector for previous session data"""
st.subheader("Previous Sessions")
# Load or initialize previous sessions data
if 'previous_sessions' not in st.session_state:
st.session_state.previous_sessions = load_previous_sessions()
if not st.session_state.previous_sessions:
st.info("No previous sessions found.")
return
# Create session selector
sessions = st.session_state.previous_sessions
session_dates = [session['date'] for session in sessions]
selected_date = st.selectbox(
"Select Session Date:",
session_dates,
format_func=lambda x: x.strftime("%Y-%m-%d %H:%M")
)
# Show selected session data
if selected_date:
selected_session = next(
(session for session in sessions if session['date'] == selected_date),
None
)
if selected_session:
st.session_state.current_transcript = selected_session['transcript']
analyze_session_content(selected_session['transcript'])
def load_previous_sessions():
"""Load previous session data from storage"""
try:
# Initialize empty list for sessions
sessions = []
# Here you would typically load from your database or file storage
# For demonstration, we'll create some sample data
sample_sessions = [
{
'date': datetime.now(),
'transcript': "Sample transcript 1...",
'analysis': "Sample analysis 1..."
},
{
'date': datetime.now(),
'transcript': "Sample transcript 2...",
'analysis': "Sample analysis 2..."
}
]
return sample_sessions
except Exception as e:
st.error(f"Error loading previous sessions: {str(e)}")
return []
def show_manual_input_form():
"""Display form for manual session notes input"""
st.subheader("Session Notes Input")
with st.form("session_notes_form"):
# Basic session information
session_date = st.date_input("Session Date", datetime.now())
session_duration = st.number_input("Duration (minutes)", min_value=15, max_value=120, value=50)
# Session content
session_notes = st.text_area(
"Session Notes",
height=300,
placeholder="Enter detailed session notes here..."
)
# Key themes and observations
key_themes = st.text_area(
"Key Themes",
height=100,
placeholder="Enter key themes identified during the session..."
)
# MI specific elements
mi_techniques_used = st.multiselect(
"MI Techniques Used",
["Open Questions", "Affirmations", "Reflections", "Summaries",
"Change Talk", "Commitment Language", "Planning"]
)
# Submit button
submitted = st.form_submit_button("Analyze Session")
if submitted and session_notes:
# Combine all input into a structured format
session_data = {
'date': session_date,
'duration': session_duration,
'notes': session_notes,
'themes': key_themes,
'techniques': mi_techniques_used
}
# Process the session data
st.session_state.current_transcript = format_session_data(session_data)
analyze_session_content(st.session_state.current_transcript)
def format_session_data(session_data):
"""Format session data into analyzable transcript"""
formatted_text = f"""
Session Date: {session_data['date']}
Duration: {session_data['duration']} minutes
SESSION NOTES:
{session_data['notes']}
KEY THEMES:
{session_data['themes']}
MI TECHNIQUES USED:
{', '.join(session_data['techniques'])}
"""
return formatted_text
def analyze_session_content(transcript):
"""Analyze session content using Gemini AI"""
try:
# Configure Gemini model
model = genai.GenerativeModel('gemini-pro')
# Prepare analysis prompt
analysis_prompt = SESSION_EVALUATION_PROMPT + f"\nTranscript:\n{transcript}"
# Generate analysis
response = model.generate_content(analysis_prompt)
# Store and display results
st.session_state.analysis_results = response.text
show_analysis_results()
except Exception as e:
st.error(f"Error analyzing session content: {str(e)}")
def show_analysis_results():
"""Display session analysis results"""
if not st.session_state.analysis_results:
st.warning("No analysis results available.")
return
st.header("Session Analysis Results")
# Create tabs for different aspects of analysis
tabs = st.tabs([
"MI Adherence",
"Technical Skills",
"Client Language",
"Session Flow",
"Recommendations"
])
# Parse analysis results (assuming structured response from AI)
analysis = parse_analysis_results(st.session_state.analysis_results)
# Display results in respective tabs
with tabs[0]:
show_mi_adherence_analysis(analysis.get('mi_adherence', {}))
with tabs[1]:
show_technical_skills_analysis(analysis.get('technical_skills', {}))
with tabs[2]:
show_client_language_analysis(analysis.get('client_language', {}))
with tabs[3]:
show_session_flow_analysis(analysis.get('session_flow', {}))
with tabs[4]:
show_recommendations(analysis.get('recommendations', {}))
def parse_analysis_results(results_text):
"""Parse the AI analysis results into structured format"""
# This is a placeholder for more sophisticated parsing
# In a real implementation, you'd want to parse the AI response
# into a structured format based on your specific needs
return {
'mi_adherence': {'raw_text': results_text},
'technical_skills': {'raw_text': results_text},
'client_language': {'raw_text': results_text},
'session_flow': {'raw_text': results_text},
'recommendations': {'raw_text': results_text}
}
# Analysis display functions
def show_mi_adherence_analysis(analysis):
st.subheader("MI Adherence Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_technical_skills_analysis(analysis):
st.subheader("Technical Skills Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_client_language_analysis(analysis):
st.subheader("Client Language Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_session_flow_analysis(analysis):
st.subheader("Session Flow Analysis")
st.write(analysis.get('raw_text', 'No analysis available'))
def show_recommendations(analysis):
st.subheader("Recommendations")
st.write(analysis.get('raw_text', 'No recommendations available'))
if __name__ == "__main__":
show_session_analysis() |