File size: 41,075 Bytes
b34b702
55e9f92
184c6e4
b34b702
 
baeff27
 
 
 
 
 
 
 
b34b702
 
baeff27
b34b702
baeff27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34b702
 
baeff27
 
b34b702
 
baeff27
 
 
 
 
b34b702
baeff27
b34b702
baeff27
 
b34b702
baeff27
 
 
 
 
 
 
 
184c6e4
 
 
daf586d
184c6e4
daf586d
 
184c6e4
 
 
daf586d
184c6e4
 
daf586d
 
 
 
 
 
b190eed
 
 
daf586d
b190eed
 
 
 
daf586d
 
 
 
 
 
184c6e4
 
 
 
 
 
 
 
 
 
 
 
 
b190eed
184c6e4
 
b190eed
 
 
 
 
 
 
 
 
 
184c6e4
 
 
 
 
baeff27
 
 
 
 
 
 
 
82ec579
 
 
55e9f92
82ec579
55e9f92
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e9f92
baeff27
 
55e9f92
 
baeff27
 
55e9f92
 
 
baeff27
 
 
 
 
 
55e9f92
82ec579
baeff27
 
 
 
 
 
 
 
 
 
 
b190eed
baeff27
b190eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
 
 
b190eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
 
 
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
7d996ca
 
baeff27
7d996ca
 
 
 
 
baeff27
 
7d996ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
7d996ca
 
 
baeff27
7d996ca
 
baeff27
7d996ca
 
baeff27
7d996ca
 
baeff27
55e9f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82ec579
184c6e4
 
82ec579
 
184c6e4
 
82ec579
 
 
184c6e4
82ec579
 
 
184c6e4
 
 
 
 
 
 
 
 
 
82ec579
 
 
184c6e4
82ec579
 
184c6e4
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33510a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d996ca
daf586d
7d996ca
b190eed
 
7d996ca
 
 
33510a5
 
 
 
 
 
 
b190eed
 
33510a5
7d996ca
b190eed
7d996ca
 
daf586d
 
 
 
 
 
 
 
7d996ca
 
 
 
 
 
 
 
 
 
daf586d
 
7d996ca
 
 
b190eed
7d996ca
 
 
 
 
 
 
 
 
 
 
 
 
0c62c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b190eed
0c62c39
 
b190eed
33510a5
b190eed
 
7d996ca
 
b190eed
7d996ca
 
 
 
 
 
 
b190eed
7d996ca
 
 
 
 
b190eed
 
33510a5
b190eed
 
7d996ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b190eed
 
33510a5
7d996ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf586d
b190eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33510a5
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daf586d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33510a5
82ec579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33510a5
82ec579
 
 
 
 
 
33510a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baeff27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
import streamlit as st
import io
from io import BytesIO
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
from datetime import datetime
import json
import numpy as np
from docx import Document
import re
from prompts import SESSION_EVALUATION_PROMPT, MI_SYSTEM_PROMPT

def show_session_analysis():
    st.title("MI Session Analysis Dashboard")
    
    # Initialize session state for analysis results
    if 'analysis_results' not in st.session_state:
        st.session_state.analysis_results = None
    if 'current_transcript' not in st.session_state:
        st.session_state.current_transcript = None

    # Main layout
    col1, col2 = st.columns([1, 2])
    
    with col1:
        show_upload_section()
    
    with col2:
        if st.session_state.analysis_results:
            show_analysis_results()

def show_upload_section():
    st.header("Session Data Upload")
    
    upload_type = st.radio(
        "Select Input Method:",
        ["Audio Recording", "Video Recording", "Text Transcript", "Session Notes", "Previous Session Data"]
    )
    
    if upload_type in ["Audio Recording", "Video Recording"]:
        file = st.file_uploader(
            f"Upload {upload_type}", 
            type=["wav", "mp3", "mp4"] if upload_type == "Audio Recording" else ["mp4", "avi", "mov"]
        )
        if file:
            process_media_file(file, upload_type)
            
    elif upload_type == "Text Transcript":
        file = st.file_uploader("Upload Transcript", type=["txt", "doc", "docx", "json"])
        if file:
            process_text_file(file)
            
    elif upload_type == "Session Notes":
        show_manual_input_form()
        
    else:  # Previous Session Data
        show_previous_sessions_selector()

def process_video_file(video_file):
    """Process uploaded video file"""
    try:
        # Create a unique temporary file name
        temp_path = f"temp_video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
        
        # Save video temporarily
        with open(temp_path, "wb") as f:
            f.write(video_file.getbuffer())
        
        # Display video
        st.video(temp_path)
        
        # Add transcript input
        transcript = st.text_area(
            "Enter the session transcript:",
            height=300,
            help="Paste or type the transcript of the session here."
        )
        
        # Add analyze button
        if st.button("Analyze Transcript"):
            if transcript.strip():
                with st.spinner('Analyzing transcript...'):
                    analyze_session_content(transcript)
            else:
                st.warning("Please enter a transcript before analyzing.")
                
        # Clean up temporary file
        try:
            os.remove(temp_path)
        except:
            pass
            
    except Exception as e:
        st.error(f"Error processing video: {str(e)}")

def process_audio_file(audio_file):
    """Process uploaded audio file"""
    try:
        # Save audio temporarily
        temp_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
        with open(temp_path, "wb") as f:
            f.write(audio_file.getbuffer())
        
        st.audio(temp_path)
        st.info("Audio uploaded successfully. Please provide transcript.")
        
        # Add manual transcript input
        transcript = st.text_area("Enter the session transcript:", height=300)
        
        # Add analyze button
        if st.button("Analyze Transcript"):
            if transcript:
                with st.spinner('Analyzing transcript...'):
                    st.session_state.current_transcript = transcript
                    analyze_session_content(transcript)
            else:
                st.warning("Please enter a transcript before analyzing.")
            
    except Exception as e:
        st.error(f"Error processing audio: {str(e)}")


def process_media_file(file, type):
    st.write(f"Processing {type}...")
    
    # Add processing status
    status = st.empty()
    progress_bar = st.progress(0)
    
    try:
        # Read file content
        file_content = file.read()
        
        status.text("Generating transcript...")
        progress_bar.progress(50)
        
        # Generate transcript using Gemini
        model = genai.GenerativeModel('gemini-pro')
        
        # Convert file content to text
        if type == "Audio Recording":
            # For audio files, create a prompt that describes the audio
            prompt = f"""
            This is an audio recording of a therapy session.
            Please transcribe the conversation and include speaker labels where possible.
            Focus on capturing:
            1. The therapist's questions and reflections
            2. The client's responses and statements
            3. Any significant pauses or non-verbal sounds
            """
        else:  # Video Recording
            # For video files, create a prompt that describes the video
            prompt = f"""
            This is a video recording of a therapy session.
            Please transcribe the conversation and include:
            1. Speaker labels
            2. Verbal communication
            3. Relevant non-verbal cues and body language
            4. Significant pauses or interactions
            """
            
        # Generate transcript
        response = model.generate_content(prompt)
        transcript = response.text
        
        if transcript:
            st.session_state.current_transcript = transcript
            status.text("Analyzing content...")
            progress_bar.progress(80)
            analyze_session_content(transcript)
            
        progress_bar.progress(100)
        status.text("Processing complete!")
            
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
    finally:
        status.empty()
        progress_bar.empty()



def get_processing_step_name(step):
    steps = [
        "Loading media file",
        "Converting to audio",
        "Performing speech recognition",
        "Generating transcript",
        "Preparing analysis"
    ]
    return steps[step]

def process_text_file(file):
    """Process uploaded text file"""
    try:
        # Read file content
        content = file.getvalue().decode("utf-8")
        st.session_state.current_transcript = content
        
        # Display transcript with edit option
        edited_transcript = st.text_area(
            "Review and edit transcript if needed:",
            value=content,
            height=300
        )
        
        # Add analyze button
        if st.button("Analyze Transcript"):
            with st.spinner('Analyzing transcript...'):
                st.session_state.current_transcript = edited_transcript
                analyze_session_content(edited_transcript)
                
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")

def parse_analysis_results(raw_results):
    """Parse the raw analysis results into structured format"""
    if isinstance(raw_results, dict):
        return raw_results  # Already parsed
    
    try:
        # If it's a string, try to extract structured data
        analysis = {
            'mi_adherence_score': 0,
            'key_themes': [],
            'technique_usage': {},
            'strengths': [],
            'areas_for_improvement': [],
            'session_summary': ''
        }
        
        # Extract score (assuming it's in format "Score: XX")
        score_match = re.search(r'Score:\s*(\d+)', raw_results)
        if score_match:
            analysis['mi_adherence_score'] = int(score_match.group(1))
        
        # Extract themes (assuming they're listed after "Key Themes:")
        themes_match = re.search(r'Key Themes:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
        if themes_match:
            themes = themes_match.group(1).strip().split('\n')
            analysis['key_themes'] = [t.strip('- ') for t in themes if t.strip()]
        
        # Extract techniques (assuming they're listed with counts)
        techniques = re.findall(r'(\w+\s*\w*)\s*:\s*(\d+)', raw_results)
        if techniques:
            analysis['technique_usage'] = {t[0]: int(t[1]) for t in techniques}
        
        # Extract strengths
        strengths_match = re.search(r'Strengths:(.*?)(?=Areas for Improvement|\Z)', raw_results, re.DOTALL)
        if strengths_match:
            strengths = strengths_match.group(1).strip().split('\n')
            analysis['strengths'] = [s.strip('- ') for s in strengths if s.strip()]
        
        # Extract areas for improvement
        improvements_match = re.search(r'Areas for Improvement:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
        if improvements_match:
            improvements = improvements_match.group(1).strip().split('\n')
            analysis['areas_for_improvement'] = [i.strip('- ') for i in improvements if i.strip()]
        
        # Extract summary
        summary_match = re.search(r'Summary:(.*?)(?=\n\n|\Z)', raw_results, re.DOTALL)
        if summary_match:
            analysis['session_summary'] = summary_match.group(1).strip()
        
        return analysis
        
    except Exception as e:
        st.error(f"Error parsing analysis results: {str(e)}")
        return None
        
def show_manual_input_form():
    st.subheader("Session Details")
    
    with st.form("session_notes_form"):
        # Basic session information
        session_date = st.date_input("Session Date", datetime.now())
        session_duration = st.number_input("Duration (minutes)", min_value=15, max_value=120, value=50)
        
        # Session content
        session_notes = st.text_area(
            "Session Notes",
            height=300,
            placeholder="Enter detailed session notes here..."
        )
        
        # Key themes and observations
        key_themes = st.text_area(
            "Key Themes",
            height=100,
            placeholder="Enter key themes identified during the session..."
        )
        
        # MI specific elements
        mi_techniques_used = st.multiselect(
            "MI Techniques Used",
            ["Open Questions", "Affirmations", "Reflections", "Summaries", 
             "Change Talk", "Commitment Language", "Planning"]
        )
        
        # Submit button
        submitted = st.form_submit_button("Analyze Session")
        
        if submitted and session_notes:
            # Combine all input into a structured format
            session_data = {
                'date': session_date,
                'duration': session_duration,
                'notes': session_notes,
                'themes': key_themes,
                'techniques': mi_techniques_used
            }
            
            # Process the session data
            st.session_state.current_transcript = format_session_data(session_data)
            analyze_session_content(st.session_state.current_transcript)


def analyze_session_content(transcript):
    """Analyze the session transcript using Gemini"""
    try:
        if not transcript:
            st.warning("Please provide a transcript for analysis.")
            return

        # Configure the model
        model = genai.GenerativeModel('gemini-pro')
        
        # Structured prompt for MI analysis
        prompt = f"""
        As an MI (Motivational Interviewing) expert, analyze this therapy session transcript and provide detailed feedback in the following format:

        === MI Adherence ===
        Score: [Provide a score from 0-100]
        Strengths:
        - [List 3 specific strengths with examples]
        Areas for Growth:
        - [List 3 specific areas needing improvement with examples]

        === Technical Analysis ===
        OARS Usage Count:
        - Open Questions: [number]
        - Affirmations: [number]
        - Reflections: [number]
        - Summaries: [number]

        === Client Language Analysis ===
        Change Talk Examples:
        - [List 3-4 specific quotes showing change talk]
        Sustain Talk Examples:
        - [List 2-3 specific quotes showing sustain talk]
        Change Talk/Sustain Talk Ratio: [X:Y]

        === Session Flow ===
        Key Moments:
        1. [Describe key moment 1]
        2. [Describe key moment 2]
        3. [Describe key moment 3]

        Therapeutic Process:
        - [Describe how the session progressed]
        - [Note any significant shifts]

        === Recommendations ===
        Priority Actions:
        1. [Specific recommendation 1]
        2. [Specific recommendation 2]
        3. [Specific recommendation 3]

        Development Strategies:
        - [Practical strategy 1]
        - [Practical strategy 2]

        Analyze this transcript:
        {transcript}
        """

        # Generate response
        response = model.generate_content(prompt)
        
        # Store results
        st.session_state.analysis_results = response.text
        
        return True

    except Exception as e:
        st.error(f"Error in analysis: {str(e)}")
        return False


def generate_transcript(audio_content):
    """
    Generate transcript from audio content using Google Speech-to-Text
    Note: This requires the Google Cloud Speech-to-Text API
    """
    try:
        # Initialize Speech-to-Text client
        client = speech_v1.SpeechClient()

        # Configure audio and recognition settings
        audio = speech_v1.RecognitionAudio(content=audio_content)
        config = speech_v1.RecognitionConfig(
            encoding=speech_v1.RecognitionConfig.AudioEncoding.LINEAR16,
            sample_rate_hertz=16000,
            language_code="en-US",
            enable_automatic_punctuation=True,
        )

        # Perform the transcription
        response = client.recognize(config=config, audio=audio)

        # Combine all transcriptions
        transcript = ""
        for result in response.results:
            transcript += result.alternatives[0].transcript + " "

        return transcript.strip()

    except Exception as e:
        st.error(f"Error in transcript generation: {str(e)}")
        return None

def convert_video_to_audio(video_file):
    """
    Convert video file to audio content
    Note: This is a placeholder - you'll need to implement actual video to audio conversion
    """
    # Placeholder for video to audio conversion
    # You might want to use libraries like moviepy or ffmpeg-python
    st.warning("Video to audio conversion not implemented yet")
    return None

    
def process_analysis_results(raw_analysis):
    """Process and structure the analysis results"""
    # Parse the raw analysis text and extract structured data
    sections = extract_analysis_sections(raw_analysis)
    
    # Calculate metrics
    metrics = calculate_mi_metrics(raw_analysis)
    
    return {
        "raw_analysis": raw_analysis,
        "structured_sections": sections,
        "metrics": metrics,
        "timestamp": datetime.now().isoformat()
    }


def show_mi_metrics_dashboard(metrics):
    st.subheader("MI Performance Dashboard")
    
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        show_metric_card(
            "MI Spirit Score",
            metrics.get('mi_spirit_score', 0),
            "0-5 scale"
        )
    
    with col2:
        show_metric_card(
            "Change Talk Ratio",
            metrics.get('change_talk_ratio', 0),
            "Change vs Sustain"
        )
    
    with col3:
        show_metric_card(
            "Reflection Ratio",
            metrics.get('reflection_ratio', 0),
            "Reflections/Questions"
        )
    
    with col4:
        show_metric_card(
            "Overall Adherence",
            metrics.get('overall_adherence', 0),
            "Percentage"
        )

def show_metric_card(title, value, subtitle):
    st.markdown(
        f"""
        <div style="border:1px solid #ccc; padding:10px; border-radius:5px; text-align:center;">
            <h3>{title}</h3>
            <h2>{value:.2f}</h2>
            <p>{subtitle}</p>
        </div>
        """,
        unsafe_allow_html=True
    )

def show_mi_adherence_analysis(results):
    st.subheader("MI Adherence Analysis")
    
    # OARS Implementation
    st.write("### OARS Implementation")
    show_oars_chart(results['metrics'].get('oars_metrics', {}))
    
    # MI Spirit Components
    st.write("### MI Spirit Components")
    show_mi_spirit_chart(results['metrics'].get('mi_spirit_metrics', {}))
    
    # Detailed breakdown
    st.write("### Detailed Analysis")
    st.markdown(results['structured_sections'].get('mi_adherence', ''))

def show_technical_skills_analysis(results):
    st.subheader("Technical Skills Analysis")
    
    # Question Analysis
    col1, col2 = st.columns(2)
    
    with col1:
        show_question_type_chart(results['metrics'].get('question_metrics', {}))
    
    with col2:
        show_reflection_depth_chart(results['metrics'].get('reflection_metrics', {}))
    
    # Detailed analysis
    st.markdown(results['structured_sections'].get('technical_skills', ''))

def show_client_language_analysis(results):
    st.subheader("Client Language Analysis")
    
    # Change Talk Timeline
    show_change_talk_timeline(results['metrics'].get('change_talk_timeline', []))
    
    # Language Categories
    show_language_categories_chart(results['metrics'].get('language_categories', {}))
    
    # Detailed analysis
    st.markdown(results['structured_sections'].get('client_language', ''))

def show_session_flow_analysis(results):
    st.subheader("Session Flow Analysis")
    
    # Session Flow Timeline
    show_session_flow_timeline(results['metrics'].get('session_flow', []))
    
    # Engagement Metrics
    show_engagement_metrics(results['metrics'].get('engagement_metrics', {}))
    
    # Detailed analysis
    st.markdown(results['structured_sections'].get('session_flow', ''))

def show_recommendations(results):
    st.subheader("Recommendations and Next Steps")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.write("### Strengths")
        strengths = results['structured_sections'].get('strengths', [])
        for strength in strengths:
            st.markdown(f"✓ {strength}")
    
    with col2:
        st.write("### Growth Areas")
        growth_areas = results['structured_sections'].get('growth_areas', [])
        for area in growth_areas:
            st.markdown(f"→ {area}")
    
    st.write("### Suggested Interventions")
    st.markdown(results['structured_sections'].get('suggested_interventions', ''))
    
    st.write("### Next Session Planning")
    st.markdown(results['structured_sections'].get('next_session_plan', ''))

# Utility functions for charts and visualizations
def show_oars_chart(oars_metrics):
    # Create OARS radar chart using plotly
    categories = ['Open Questions', 'Affirmations', 'Reflections', 'Summaries']
    values = [
        oars_metrics.get('open_questions', 0),
        oars_metrics.get('affirmations', 0),
        oars_metrics.get('reflections', 0),
        oars_metrics.get('summaries', 0)
    ]
    
    fig = go.Figure(data=go.Scatterpolar(
        r=values,
        theta=categories,
        fill='toself'
    ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, max(values) + 1]
            )),
        showlegend=False
    )
    
    st.plotly_chart(fig)


def save_analysis_results():
    """Save analysis results to file"""
    if st.session_state.analysis_results:
        try:
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"analysis_results_{timestamp}.json"
            
            with open(filename, "w") as f:
                json.dump(st.session_state.analysis_results, f, indent=4)
            
            st.success(f"Analysis results saved to {filename}")
            
        except Exception as e:
            st.error(f"Error saving analysis results: {str(e)}")

def show_upload_section():
    """Display the upload section of the dashboard"""
    st.subheader("Upload Session")
    
    upload_type = st.radio(
        "Choose input method:",
        ["Text Transcript", "Video Recording", "Audio Recording", "Session Notes", "Previous Sessions"]
    )
    
    if upload_type == "Text Transcript":
        file = st.file_uploader("Upload transcript file", type=['txt', 'doc', 'docx'])
        if file:
            process_text_file(file)
            
    elif upload_type == "Video Recording":
        video_file = st.file_uploader("Upload video file", type=['mp4', 'mov', 'avi'])
        if video_file:
            process_video_file(video_file)
            
    elif upload_type == "Audio Recording":
        audio_file = st.file_uploader("Upload audio file", type=['mp3', 'wav', 'm4a'])
        if audio_file:
            process_audio_file(audio_file)
            
    elif upload_type == "Session Notes":
        show_manual_input_form()
        
    else:
        show_previous_sessions_selector()


def process_text_file(file):
    try:
        if file.name.endswith('.json'):
            content = json.loads(file.read().decode())
            transcript = extract_transcript_from_json(content)
        elif file.name.endswith('.docx'):
            doc = Document(file)
            transcript = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
        else:
            transcript = file.read().decode()
            
        if transcript:
            st.session_state.current_transcript = transcript
            analyze_session_content(transcript)
            
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
def show_export_options():
    st.sidebar.subheader("Export Options")
    
    if st.sidebar.button("Export Analysis Report"):
        save_analysis_results()
    
    report_format = st.sidebar.selectbox(
        "Report Format",
        ["PDF", "DOCX", "JSON"]
    )
    
    if st.sidebar.button("Generate Report"):
        generate_report(report_format)

def generate_report(format):
    """Generate analysis report in specified format"""
    # Add report generation logic here
    st.info(f"Generating {format} report... (Feature coming soon)")

def show_previous_sessions_selector():
    """Display selector for previous session data"""
    st.subheader("Previous Sessions")
    
    # Load or initialize previous sessions data
    if 'previous_sessions' not in st.session_state:
        st.session_state.previous_sessions = load_previous_sessions()
    
    if not st.session_state.previous_sessions:
        st.info("No previous sessions found.")
        return
    
    # Create session selector
    sessions = st.session_state.previous_sessions
    session_dates = [session['date'] for session in sessions]
    selected_date = st.selectbox(
        "Select Session Date:",
        session_dates,
        format_func=lambda x: x.strftime("%Y-%m-%d %H:%M")
    )
    
    # Show selected session data
    if selected_date:
        selected_session = next(
            (session for session in sessions if session['date'] == selected_date),
            None
        )
        if selected_session:
            st.session_state.current_transcript = selected_session['transcript']
            analyze_session_content(selected_session['transcript'])

def load_previous_sessions():
    """Load previous session data from storage"""
    try:
        # Initialize empty list for sessions
        sessions = []
        
        # Here you would typically load from your database or file storage
        # For demonstration, we'll create some sample data
        sample_sessions = [
            {
                'date': datetime.now(),
                'transcript': "Sample transcript 1...",
                'analysis': "Sample analysis 1..."
            },
            {
                'date': datetime.now(),
                'transcript': "Sample transcript 2...",
                'analysis': "Sample analysis 2..."
            }
        ]
        
        return sample_sessions
    except Exception as e:
        st.error(f"Error loading previous sessions: {str(e)}")
        return []


def format_session_data(session_data):
    """Format session data into analyzable transcript"""
    formatted_text = f"""
    Session Date: {session_data['date']}
    Duration: {session_data['duration']} minutes
    
    SESSION NOTES:
    {session_data['notes']}
    
    KEY THEMES:
    {session_data['themes']}
    
    MI TECHNIQUES USED:
    {', '.join(session_data['techniques'])}
    """
    return formatted_text


def show_analysis_results():
    """Display the analysis results in organized tabs"""
    if 'analysis_results' not in st.session_state or not st.session_state.analysis_results:
        st.info("Please analyze a transcript first.")
        return

    results = st.session_state.analysis_results

    # Create tabs
    tabs = st.tabs([
        "MI Adherence",
        "Technical Skills",
        "Client Language",
        "Session Flow",
        "Recommendations"
    ])

    # MI Adherence Tab
    with tabs[0]:
        st.subheader("MI Adherence Analysis")
        
        # Extract score
        score_match = re.search(r'Score:\s*(\d+)', results)
        if score_match:
            score = int(score_match.group(1))
            
            # Create score gauge
            fig = go.Figure(go.Indicator(
                mode="gauge+number",
                value=score,
                domain={'x': [0, 1], 'y': [0, 1]},
                gauge={
                    'axis': {'range': [0, 100]},
                    'bar': {'color': "rgb(26, 118, 255)"},
                    'steps': [
                        {'range': [0, 33], 'color': "lightgray"},
                        {'range': [33, 66], 'color': "gray"},
                        {'range': [66, 100], 'color': "darkgray"}
                    ]
                }
            ))
            st.plotly_chart(fig)

        # Display strengths and areas for growth
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Strengths")
            strengths = re.findall(r'Strengths:\n((?:- .*\n)*)', results)
            if strengths:
                for strength in strengths[0].strip().split('\n'):
                    if strength.startswith('- '):
                        st.markdown(f"✅ {strength[2:]}")

        with col2:
            st.subheader("Areas for Growth")
            growth = re.findall(r'Areas for Growth:\n((?:- .*\n)*)', results)
            if growth:
                for area in growth[0].strip().split('\n'):
                    if area.startswith('- '):
                        st.markdown(f"🔄 {area[2:]}")
    # Technical Skills Tab
    with tabs[1]:
        st.subheader("OARS Technique Analysis")
        
        # Extract OARS counts
        oars_pattern = r'OARS Usage Count:\n- Open Questions: (\d+)\n- Affirmations: (\d+)\n- Reflections: (\d+)\n- Summaries: (\d+)'
        oars_match = re.search(oars_pattern, results)
        
        if oars_match:
            open_q = int(oars_match.group(1))
            affirm = int(oars_match.group(2))
            reflect = int(oars_match.group(3))
            summ = int(oars_match.group(4))
            
            # Create bar chart
            fig = go.Figure(data=[
                go.Bar(
                    x=['Open Questions', 'Affirmations', 'Reflections', 'Summaries'],
                    y=[open_q, affirm, reflect, summ],
                    marker_color=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
                )
            ])
            
            fig.update_layout(
                title="OARS Techniques Usage",
                xaxis_title="Technique Type",
                yaxis_title="Frequency",
                showlegend=False,
                height=400
            )
            
            st.plotly_chart(fig)

            # Display detailed breakdown
            col1, col2 = st.columns(2)
            
            with col1:
                st.markdown("### Technique Counts")
                st.markdown(f"🔹 **Open Questions:** {open_q}")
                st.markdown(f"🔹 **Affirmations:** {affirm}")
                st.markdown(f"🔹 **Reflections:** {reflect}")
                st.markdown(f"🔹 **Summaries:** {summ}")

            with col2:
                # Calculate total and percentages
                total = open_q + affirm + reflect + summ
                st.markdown("### Technique Distribution")
                st.markdown(f"🔸 **Open Questions:** {(open_q/total*100):.1f}%")
                st.markdown(f"🔸 **Affirmations:** {(affirm/total*100):.1f}%")
                st.markdown(f"🔸 **Reflections:** {(reflect/total*100):.1f}%")
                st.markdown(f"🔸 **Summaries:** {(summ/total*100):.1f}%")

            # Add reflection-to-question ratio
            st.markdown("### Key Metrics")
            if open_q > 0:
                r_to_q = reflect / open_q
                st.metric(
                    label="Reflection-to-Question Ratio", 
                    value=f"{r_to_q:.2f}",
                    help="Target ratio is 2:1 or higher"
                )

            # Add MI best practice guidelines
            st.markdown("### MI Best Practices")
            st.info("""
            📌 **Ideal OARS Distribution:**
            - Reflections should exceed questions (2:1 ratio)
            - Regular use of affirmations (at least 1-2 per session)
            - Strategic use of summaries at transition points
            - Open questions > 70% of all questions
            """)

        else:
            st.warning("Technical skills analysis data not found in the results.")
    # Client Language Tab
    with tabs[2]:
        st.subheader("Client Language Analysis")
        
        col1, col2 = st.columns(2)
        with col1:
            st.markdown("### Change Talk 🌱")
            change_talk = re.findall(r'Change Talk Examples:\n((?:- .*\n)*)', results)
            if change_talk:
                for talk in change_talk[0].strip().split('\n'):
                    if talk.startswith('- '):
                        st.markdown(f"- {talk[2:]}")

        with col2:
            st.markdown("### Sustain Talk 🔄")
            sustain_talk = re.findall(r'Sustain Talk Examples:\n((?:- .*\n)*)', results)
            if sustain_talk:
                for talk in sustain_talk[0].strip().split('\n'):
                    if talk.startswith('- '):
                        st.markdown(f"- {talk[2:]}")

    # Session Flow Tab
    with tabs[3]:
        st.subheader("Session Flow Analysis")
        
        # Key Moments
        st.markdown("### Key Moments")
        key_moments = re.findall(r'Key Moments:\n((?:\d\. .*\n)*)', results)
        if key_moments:
            for moment in key_moments[0].strip().split('\n'):
                if moment.strip():
                    st.markdown(f"{moment}")

        # Therapeutic Process
        st.markdown("### Therapeutic Process")
        process = re.findall(r'Therapeutic Process:\n((?:- .*\n)*)', results)
        if process:
            for item in process[0].strip().split('\n'):
                if item.startswith('- '):
                    st.markdown(f"- {item[2:]}")

    # Recommendations Tab
    with tabs[4]:
        st.subheader("Recommendations")
        
        # Priority Actions
        st.markdown("### Priority Actions 🎯")
        priorities = re.findall(r'Priority Actions:\n((?:\d\. .*\n)*)', results)
        if priorities:
            for priority in priorities[0].strip().split('\n'):
                if priority.strip():
                    st.markdown(f"{priority}")

        # Development Strategies
        st.markdown("### Development Strategies 📈")
        strategies = re.findall(r'Development Strategies:\n((?:- .*\n)*)', results)
        if strategies:
            for strategy in strategies[0].strip().split('\n'):
                if strategy.startswith('- '):
                    st.markdown(f"- {strategy[2:]}")


def get_technique_description(technique):
    """Return description for MI techniques"""
    descriptions = {
        "Open Questions": "Questions that allow for elaboration and cannot be answered with a simple yes/no.",
        "Reflections": "Statements that mirror, rephrase, or elaborate on the client's speech.",
        "Affirmations": "Statements that recognize client strengths and acknowledge behaviors that lead to positive change.",
        "Summaries": "Statements that collect, link, and transition between client statements.",
        "Information Giving": "Providing information with permission and in response to client needs.",
        # Add more techniques as needed
    }
    return descriptions.get(technique, "Description not available")

def create_session_timeline(timeline_data):
    """Create a visual timeline of the session"""
    if not timeline_data:
        st.info("Detailed timeline not available")
        return
    
    fig = go.Figure()
    # Add timeline visualization code here
    st.plotly_chart(fig)

def get_improvement_suggestion(area):
    """Return specific suggestions for improvement areas"""
    suggestions = {
        "Open Questions": "Try replacing closed questions with open-ended ones. Instead of 'Did you exercise?', ask 'What kinds of physical activity have you been doing?'",
        "Reflections": "Practice using more complex reflections by adding meaning or emotion to what the client has said.",
        "Empathy": "Focus on seeing the situation from the client's perspective and verbalize your understanding.",
        # Add more suggestions as needed
    }
    return suggestions.get(area, "Work on incorporating this element more intentionally in your sessions.")

def create_action_items(analysis):
    """Create specific action items based on analysis"""
    st.write("Based on the analysis, consider focusing on these specific actions:")
    
    # Example action items
    action_items = [
        "Practice one new MI skill each session",
        "Record and review your sessions",
        "Focus on developing complex reflections",
        "Track change talk/sustain talk ratio"
    ]
    
    for item in action_items:
        st.checkbox(item)

def show_relevant_resources(analysis):
    """Display relevant resources based on analysis"""
    resources = [
        {"title": "MI Practice Exercises", "url": "#"},
        {"title": "Reflection Templates", "url": "#"},
        {"title": "Change Talk Recognition Guide", "url": "#"},
        {"title": "MI Community of Practice", "url": "#"}
    ]
    
    for resource in resources:
        st.markdown(f"[{resource['title']}]({resource['url']})")


def parse_analysis_response(response_text):
    """Parse the AI response into structured analysis results"""
    try:
        # Initialize default structure for analysis results
        analysis = {
            'mi_adherence_score': 0.0,
            'key_themes': [],
            'technique_usage': {},
            'strengths': [],
            'areas_for_improvement': [],
            'recommendations': [],
            'change_talk_instances': [],
            'session_summary': ""
        }
        
        # Extract MI adherence score
        score_match = re.search(r'MI Adherence Score:\s*(\d+\.?\d*)', response_text)
        if score_match:
            analysis['mi_adherence_score'] = float(score_match.group(1))
        
        # Extract key themes
        themes_section = re.search(r'Key Themes:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
        if themes_section:
            themes = themes_section.group(1).strip().split('\n')
            analysis['key_themes'] = [theme.strip('- ') for theme in themes if theme.strip()]
        
        # Extract technique usage
        technique_section = re.search(r'Technique Usage:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
        if technique_section:
            techniques = technique_section.group(1).strip().split('\n')
            for technique in techniques:
                if ':' in technique:
                    name, count = technique.split(':')
                    analysis['technique_usage'][name.strip()] = int(count.strip())
        
        # Extract strengths
        strengths_section = re.search(r'Strengths:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
        if strengths_section:
            strengths = strengths_section.group(1).strip().split('\n')
            analysis['strengths'] = [s.strip('- ') for s in strengths if s.strip()]
        
        # Extract areas for improvement
        improvements_section = re.search(r'Areas for Improvement:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
        if improvements_section:
            improvements = improvements_section.group(1).strip().split('\n')
            analysis['areas_for_improvement'] = [i.strip('- ') for i in improvements if i.strip()]
        
        # Extract session summary
        summary_section = re.search(r'Session Summary:(.*?)(?=\n\n|\Z)', response_text, re.DOTALL)
        if summary_section:
            analysis['session_summary'] = summary_section.group(1).strip()
        
        return analysis
        
    except Exception as e:
        st.error(f"Error parsing analysis response: {str(e)}")
        return None

def get_improvement_suggestion(area):
    """Return specific suggestions for improvement areas"""
    suggestions = {
        "open questions": "Practice replacing closed questions with open-ended ones. For example:\n- Instead of: 'Did you exercise?'\n- Try: 'What kinds of physical activity have you been doing?'",
        "reflections": "Work on using more complex reflections by adding meaning or emotion to what the client has said. Try to make at least two complex reflections for every simple reflection.",
        "empathy": "Focus on seeing the situation from the client's perspective. Take time to verbalize your understanding of their emotions and experiences.",
        "summaries": "Use more collecting summaries to gather key points discussed and transition summaries to move between topics.",
        "affirmations": "Look for opportunities to genuinely affirm client strengths and efforts, not just outcomes."
    }
    
    # Look for matching suggestions using partial string matching
    for key, value in suggestions.items():
        if key in area.lower():
            return value
    return "Focus on incorporating this element more intentionally in your sessions. Consider recording your sessions and reviewing them with a supervisor or peer."

def create_gauge_chart(score):
    """Create a gauge chart for MI Adherence Score"""
    fig = go.Figure(go.Indicator(
        mode = "gauge+number",
        value = score,
        domain = {'x': [0, 1], 'y': [0, 1]},
        title = {'text': "MI Adherence"},
        gauge = {
            'axis': {'range': [0, 100]},
            'bar': {'color': "darkblue"},
            'steps': [
                {'range': [0, 40], 'color': "lightgray"},
                {'range': [40, 70], 'color': "gray"},
                {'range': [70, 100], 'color': "darkgray"}
            ],
            'threshold': {
                'line': {'color': "red", 'width': 4},
                'thickness': 0.75,
                'value': 90
            }
        }
    ))
    
    st.plotly_chart(fig)

def create_technique_usage_chart(technique_usage):
    """Create a bar chart for MI technique usage"""
    df = pd.DataFrame(list(technique_usage.items()), columns=['Technique', 'Count'])
    fig = px.bar(
        df,
        x='Technique',
        y='Count',
        title='MI Technique Usage Frequency'
    )
    fig.update_layout(
        xaxis_title="Technique",
        yaxis_title="Frequency",
        showlegend=False
    )
    st.plotly_chart(fig)

def extract_transcript_from_json(content):
    """Extract transcript from JSON content"""
    if isinstance(content, dict):
        return json.dumps(content, indent=2)
    return str(content)
    
# Analysis display functions
def show_mi_adherence_analysis(analysis):
    st.subheader("MI Adherence Analysis")
    st.write(analysis.get('raw_text', 'No analysis available'))

def show_technical_skills_analysis(analysis):
    st.subheader("Technical Skills Analysis")
    st.write(analysis.get('raw_text', 'No analysis available'))

def show_client_language_analysis(analysis):
    st.subheader("Client Language Analysis")
    st.write(analysis.get('raw_text', 'No analysis available'))

def show_session_flow_analysis(analysis):
    st.subheader("Session Flow Analysis")
    st.write(analysis.get('raw_text', 'No analysis available'))

def show_recommendations(analysis):
    st.subheader("Recommendations")
    st.write(analysis.get('raw_text', 'No recommendations available'))
    
if __name__ == "__main__":
    show_session_analysis()