Spaces:
Running
on
L4
Running
on
L4
import sys | |
sys.path.append("../") | |
sys.path.append("../../") | |
import os | |
import json | |
import time | |
import psutil | |
import ffmpeg | |
import imageio | |
import argparse | |
from PIL import Image | |
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
from tools.painter import mask_painter | |
from tools.interact_tools import SamControler | |
from tools.misc import get_device | |
from tools.download_util import load_file_from_url | |
from matanyone_wrapper import matanyone | |
from matanyone.utils.get_default_model import get_matanyone_model | |
from matanyone.inference.inference_core import InferenceCore | |
def parse_augment(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default=None) | |
parser.add_argument('--sam_model_type', type=str, default="vit_h") | |
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications") | |
parser.add_argument('--mask_save', default=False) | |
args = parser.parse_args() | |
if not args.device: | |
args.device = str(get_device()) | |
return args | |
# SAM generator | |
class MaskGenerator(): | |
def __init__(self, sam_checkpoint, args): | |
self.args = args | |
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device) | |
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True): | |
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask) | |
return mask, logit, painted_image | |
# convert points input to prompt state | |
def get_prompt(click_state, click_input): | |
inputs = json.loads(click_input) | |
points = click_state[0] | |
labels = click_state[1] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
click_state[0] = points | |
click_state[1] = labels | |
prompt = { | |
"prompt_type":["click"], | |
"input_point":click_state[0], | |
"input_label":click_state[1], | |
"multimask_output":"True", | |
} | |
return prompt | |
def get_frames_from_image(image_input, image_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
user_name = time.time() | |
frames = [image_input] * 2 # hardcode: mimic a video with 2 frames | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# initialize video_state | |
image_state = { | |
"user_name": user_name, | |
"image_name": "output.png", | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"fps": None | |
} | |
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size) | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0]) | |
return image_state, image_info, image_state["origin_images"][0], \ | |
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=True),\ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=True), \ | |
gr.update(visible=True) | |
# extract frames from upload video | |
def get_frames_from_video(video_input, video_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
video_path = video_input | |
frames = [] | |
user_name = time.time() | |
# extract Audio | |
try: | |
audio_path = video_input.replace(".mp4", "_audio.wav") | |
ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True) | |
except Exception as e: | |
print(f"Audio extraction error: {str(e)}") | |
audio_path = "" # Set to "" if extraction fails | |
# print(f'audio_path: {audio_path}') | |
# extract frames | |
try: | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if ret == True: | |
current_memory_usage = psutil.virtual_memory().percent | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if current_memory_usage > 90: | |
break | |
else: | |
break | |
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: | |
print("read_frame_source:{} error. {}\n".format(video_path, str(e))) | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# resize if resolution too big | |
if image_size[0]>=1280 and image_size[0]>=1280: | |
scale = 1080 / min(image_size) | |
new_w = int(image_size[1] * scale) | |
new_h = int(image_size[0] * scale) | |
# update frames | |
frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames] | |
# update image_size | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# initialize video_state | |
video_state = { | |
"user_name": user_name, | |
"video_name": os.path.split(video_path)[-1], | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"fps": fps, | |
"audio": audio_path | |
} | |
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size) | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) | |
return video_state, video_info, video_state["origin_images"][0], \ | |
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=True),\ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=True), \ | |
gr.update(visible=True) | |
# get the select frame from gradio slider | |
def select_video_template(image_selection_slider, video_state, interactive_state): | |
image_selection_slider -= 1 | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state | |
def select_image_template(image_selection_slider, video_state, interactive_state): | |
image_selection_slider = 0 # fixed for image | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state | |
# set the tracking end frame | |
def get_end_number(track_pause_number_slider, video_state, interactive_state): | |
interactive_state["track_end_number"] = track_pause_number_slider | |
return video_state["painted_images"][track_pause_number_slider],interactive_state | |
# use sam to get the mask | |
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): | |
""" | |
Args: | |
template_frame: PIL.Image | |
point_prompt: flag for positive or negative button click | |
click_state: [[points], [labels]] | |
""" | |
if point_prompt == "Positive": | |
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) | |
interactive_state["positive_click_times"] += 1 | |
else: | |
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) | |
interactive_state["negative_click_times"] += 1 | |
# prompt for sam model | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]]) | |
prompt = get_prompt(click_state=click_state, click_input=coordinate) | |
mask, logit, painted_image = model.first_frame_click( | |
image=video_state["origin_images"][video_state["select_frame_number"]], | |
points=np.array(prompt["input_point"]), | |
labels=np.array(prompt["input_label"]), | |
multimask=prompt["multimask_output"], | |
) | |
video_state["masks"][video_state["select_frame_number"]] = mask | |
video_state["logits"][video_state["select_frame_number"]] = logit | |
video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
return painted_image, video_state, interactive_state | |
def add_multi_mask(video_state, interactive_state, mask_dropdown): | |
mask = video_state["masks"][video_state["select_frame_number"]] | |
interactive_state["multi_mask"]["masks"].append(mask) | |
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
select_frame = show_mask(video_state, interactive_state, mask_dropdown) | |
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]] | |
def clear_click(video_state, click_state): | |
click_state = [[],[]] | |
template_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
return template_frame, click_state | |
def remove_multi_mask(interactive_state, mask_dropdown): | |
interactive_state["multi_mask"]["mask_names"]= [] | |
interactive_state["multi_mask"]["masks"] = [] | |
return interactive_state, gr.update(choices=[],value=[]) | |
def show_mask(video_state, interactive_state, mask_dropdown): | |
mask_dropdown.sort() | |
if video_state["origin_images"]: | |
select_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
for i in range(len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
mask = interactive_state["multi_mask"]["masks"][mask_number] | |
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) | |
return select_frame | |
# image matting | |
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter): | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
if interactive_state["track_end_number"]: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
else: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
if interactive_state["multi_mask"]["masks"]: | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
for i in range(1,len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
video_state["masks"][video_state["select_frame_number"]]= template_mask | |
else: | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
# operation error | |
if len(np.unique(template_mask))==1: | |
template_mask[0][0]=1 | |
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter) | |
foreground_output = Image.fromarray(foreground[-1]) | |
alpha_output = Image.fromarray(alpha[-1][:,:,0]) | |
return foreground_output, alpha_output | |
# video matting | |
def video_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size): | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
if interactive_state["track_end_number"]: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
else: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
if interactive_state["multi_mask"]["masks"]: | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
for i in range(1,len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
video_state["masks"][video_state["select_frame_number"]]= template_mask | |
else: | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
fps = video_state["fps"] | |
audio_path = video_state["audio"] | |
# operation error | |
if len(np.unique(template_mask))==1: | |
template_mask[0][0]=1 | |
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size) | |
foreground_output = generate_video_from_frames(foreground, output_path="./results/{}_fg.mp4".format(video_state["video_name"]), fps=fps, audio_path=audio_path) # import video_input to name the output video | |
alpha_output = generate_video_from_frames(alpha, output_path="./results/{}_alpha.mp4".format(video_state["video_name"]), fps=fps, gray2rgb=True, audio_path=audio_path) # import video_input to name the output video | |
return foreground_output, alpha_output | |
def add_audio_to_video(video_path, audio_path, output_path): | |
try: | |
video_input = ffmpeg.input(video_path) | |
audio_input = ffmpeg.input(audio_path) | |
_ = ( | |
ffmpeg | |
.output(video_input, audio_input, output_path, vcodec="copy", acodec="aac") | |
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True) | |
) | |
return output_path | |
except ffmpeg.Error as e: | |
print(f"FFmpeg error:\n{e.stderr.decode()}") | |
return None | |
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""): | |
""" | |
Generates a video from a list of frames. | |
Args: | |
frames (list of numpy arrays): The frames to include in the video. | |
output_path (str): The path to save the generated video. | |
fps (int, optional): The frame rate of the output video. Defaults to 30. | |
""" | |
frames = torch.from_numpy(np.asarray(frames)) | |
_, h, w, _ = frames.shape | |
if gray2rgb: | |
frames = np.repeat(frames, 3, axis=3) | |
if not os.path.exists(os.path.dirname(output_path)): | |
os.makedirs(os.path.dirname(output_path)) | |
video_temp_path = output_path.replace(".mp4", "_temp.mp4") | |
# resize back to ensure input resolution | |
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7, | |
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"]) | |
# add audio to video if audio path exists | |
if audio_path != "" and os.path.exists(audio_path): | |
output_path = add_audio_to_video(video_temp_path, audio_path, output_path) | |
os.remove(video_temp_path) | |
return output_path | |
else: | |
return video_temp_path | |
# reset all states for a new input | |
def restart(): | |
return { | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
}, { | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
}, [[],[]], None, None, \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False) | |
# args, defined in track_anything.py | |
args = parse_augment() | |
sam_checkpoint_url_dict = { | |
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" | |
} | |
checkpoint_folder = os.path.join('/home/user/app/', 'pretrained_models') | |
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_folder) | |
# initialize sams | |
model = MaskGenerator(sam_checkpoint, args) | |
# initialize matanyone | |
# load from ckpt | |
# pretrain_model_url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0" | |
# ckpt_path = load_file_from_url(os.path.join(pretrain_model_url, 'matanyone.pth'), checkpoint_folder) | |
# matanyone_model = get_matanyone_model(ckpt_path, args.device) | |
# load from Hugging Face | |
from matanyone.model.matanyone import MatAnyone | |
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone") | |
matanyone_model = matanyone_model.to(args.device).eval() | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
# download test samples | |
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/" | |
test_sample_path = os.path.join('/home/user/app/hugging_face/', "test_sample/") | |
load_file_from_url(os.path.join(media_url, 'test-sample0-720p.mp4'), test_sample_path) | |
load_file_from_url(os.path.join(media_url, 'test-sample1-720p.mp4'), test_sample_path) | |
load_file_from_url(os.path.join(media_url, 'test-sample2-720p.mp4'), test_sample_path) | |
load_file_from_url(os.path.join(media_url, 'test-sample3-720p.mp4'), test_sample_path) | |
load_file_from_url(os.path.join(media_url, 'test-sample0.jpg'), test_sample_path) | |
load_file_from_url(os.path.join(media_url, 'test-sample1.jpg'), test_sample_path) | |
# download assets | |
assets_path = os.path.join('/home/user/app/hugging_face/', "assets/") | |
load_file_from_url(os.path.join(media_url, 'tutorial_single_target.mp4'), assets_path) | |
load_file_from_url(os.path.join(media_url, 'tutorial_multi_targets.mp4'), assets_path) | |
# documents | |
title = r"""<div class="multi-layer" align="center"><span>MatAnyone</span></div> | |
""" | |
description = r""" | |
<b>Official Gradio demo</b> for <a href='https://github.com/pq-yang/MatAnyone' target='_blank'><b>MatAnyone: Stable Video Matting with Consistent Memory Propagation</b></a>.<br> | |
🔥 MatAnyone is a practical human video matting framework supporting target assignment 🎯.<br> | |
🎪 Try to drop your video/image, assign the target masks with a few clicks, and get the the matting results 🤡!<br> | |
*Note: Due to the online GPU memory constraints, any input with too big resolution will be resized to 1080p.<br>* | |
🚀 <b> If you encounter any issue (e.g., frozen video output) or wish to run on higher resolution inputs, please consider <u>duplicating this space</u> or | |
<u>launching the <a href='https://github.com/pq-yang/MatAnyone?tab=readme-ov-file#-interactive-demo' target='_blank'>demo</a> locally</u> following the GitHub instructions.</b> | |
""" | |
article = r"""<h3> | |
<b>If MatAnyone is helpful, please help to 🌟 the <a href='https://github.com/pq-yang/MatAnyone' target='_blank'>Github Repo</a>. Thanks!</b></h3> | |
--- | |
📑 **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@InProceedings{yang2025matanyone, | |
title = {{MatAnyone}: Stable Video Matting with Consistent Memory Propagation}, | |
author = {Yang, Peiqing and Zhou, Shangchen and Zhao, Jixin and Tao, Qingyi and Loy, Chen Change}, | |
booktitle = {arXiv preprint arXiv:2501.14677}, | |
year = {2025} | |
} | |
``` | |
📝 **License** | |
<br> | |
This project is licensed under <a rel="license" href="https://github.com/pq-yang/MatAnyone/blob/main/LICENSE">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
<br> | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
<br> | |
👏 **Acknowledgement** | |
<br> | |
This project is built upon [Cutie](https://github.com/hkchengrex/Cutie), with the interactive demo adapted from [ProPainter](https://github.com/sczhou/ProPainter), leveraging segmentation capabilities from [Segment Anything](https://github.com/facebookresearch/segment-anything). Thanks for their awesome works! | |
""" | |
my_custom_css = """ | |
.gradio-container {width: 85% !important; margin: 0 auto;} | |
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important} | |
button {border-radius: 8px !important;} | |
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;} | |
.green_button {background-color: #4CAF50 !important; color: #ffffff !important; border: none !important;} | |
.new_button:hover {background-color: #4b4b4b !important;} | |
.green_button:hover {background-color: #77bd79 !important;} | |
.mask_button_group {gap: 10px !important;} | |
.video .wrap.svelte-lcpz3o { | |
display: flex !important; | |
align-items: center !important; | |
justify-content: center !important; | |
height: auto !important; | |
max-height: 300px !important; | |
} | |
.video .wrap.svelte-lcpz3o > :first-child { | |
height: auto !important; | |
width: 100% !important; | |
object-fit: contain !important; | |
} | |
.video .container.svelte-sxyn79 { | |
display: none !important; | |
} | |
.margin_center {width: 50% !important; margin: auto !important;} | |
.jc_center {justify-content: center !important;} | |
.video-title { | |
margin-bottom: 5px !important; | |
} | |
.custom-bg { | |
background-color: #f0f0f0; | |
padding: 10px; | |
border-radius: 10px; | |
} | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Sarpanch:wght@400;500;600;700;800;900&family=Sen:[email protected]&family=Sixtyfour+Convergence&family=Stardos+Stencil:wght@400;700&display=swap'); | |
body { | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
height: 100vh; | |
margin: 0; | |
background-color: #0d1117; | |
font-family: Arial, sans-serif; | |
font-size: 18px; | |
} | |
.title-container { | |
text-align: center; | |
padding: 0; | |
margin: 0; | |
height: 5vh; | |
width: 80vw; | |
font-family: "Sarpanch", sans-serif; | |
font-weight: 60; | |
} | |
#custom-markdown { | |
font-family: "Roboto", sans-serif; | |
font-size: 18px; | |
color: #333333; | |
font-weight: bold; | |
} | |
small { | |
font-size: 60%; | |
} | |
</style> | |
""" | |
with gr.Blocks(theme=gr.themes.Monochrome(), css=my_custom_css) as demo: | |
gr.HTML(''' | |
<div class="title-container"> | |
<h1 class="title is-2 publication-title" | |
style="font-size:50px; font-family: 'Sarpanch', serif; | |
background: linear-gradient(to right, #d231d8, #2dc464); | |
display: inline-block; -webkit-background-clip: text; | |
-webkit-text-fill-color: transparent;"> | |
MatAnyone | |
</h1> | |
</div> | |
''') | |
gr.Markdown(description) | |
with gr.Group(elem_classes="gr-monochrome-group", visible=True): | |
with gr.Row(): | |
with gr.Accordion("📕 Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Case 1: Single Target") | |
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_single_target.mp4", elem_classes="video") | |
with gr.Column(): | |
gr.Markdown("### Case 2: Multiple Targets") | |
gr.Video(value="/home/user/app/hugging_face/assets/tutorial_multi_targets.mp4", elem_classes="video") | |
with gr.Tabs(): | |
with gr.TabItem("Video"): | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
} | |
) | |
video_state = gr.State( | |
{ | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30, | |
"audio": "", | |
} | |
) | |
with gr.Group(elem_classes="gr-monochrome-group", visible=True): | |
with gr.Row(): | |
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): | |
with gr.Row(): | |
erode_kernel_size = gr.Slider(label='Erode Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Erosion on the added mask", | |
interactive=True) | |
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Dilation on the added mask", | |
interactive=True) | |
with gr.Row(): | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) | |
with gr.Row(): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
info="Click to add positive or negative point for target mask", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1) | |
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False) | |
gr.Markdown("---") | |
with gr.Column(): | |
# input video | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
gr.Markdown("## Step1: Upload video") | |
with gr.Column(scale=2): | |
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
video_input = gr.Video(label="Input Video", elem_classes="video") | |
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button") | |
with gr.Column(scale=2): | |
video_info = gr.Textbox(label="Video Info", visible=False) | |
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
with gr.Row(equal_height=True, elem_classes="mask_button_group"): | |
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) # no use | |
matting_button = gr.Button(value="Video Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100) | |
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">') | |
# output video | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
foreground_video_output = gr.Video(label="Foreground Output", visible=False, elem_classes="video") | |
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button") | |
with gr.Column(scale=2): | |
alpha_video_output = gr.Video(label="Alpha Output", visible=False, elem_classes="video") | |
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") | |
# first step: get the video information | |
extract_frames_button.click( | |
fn=get_frames_from_video, | |
inputs=[ | |
video_input, video_state | |
], | |
outputs=[video_state, video_info, template_frame, | |
image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, add_mask_button, matting_button, template_frame, | |
foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title] | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_video_template, | |
inputs=[image_selection_slider, video_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state], api_name="select_image") | |
track_pause_number_slider.release(fn=get_end_number, | |
inputs=[track_pause_number_slider, video_state, interactive_state], | |
outputs=[template_frame, interactive_state], api_name="end_image") | |
# click select image to get mask using sam | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[video_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state] | |
) | |
# add different mask | |
add_mask_button.click( | |
fn=add_multi_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, template_frame, click_state] | |
) | |
remove_mask_button.click( | |
fn=remove_multi_mask, | |
inputs=[interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown] | |
) | |
# video matting | |
matting_button.click( | |
fn=video_matting, | |
inputs=[video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size], | |
outputs=[foreground_video_output, alpha_video_output] | |
) | |
# click to get mask | |
mask_dropdown.change( | |
fn=show_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[template_frame] | |
) | |
# clear input | |
video_input.change( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
foreground_video_output, alpha_video_output, | |
template_frame, | |
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
video_input.clear( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
foreground_video_output, alpha_video_output, | |
template_frame, | |
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
# points clear | |
clear_button_click.click( | |
fn = clear_click, | |
inputs = [video_state, click_state,], | |
outputs = [template_frame,click_state], | |
) | |
# set example | |
gr.Markdown("---") | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0-720p.mp4", "test-sample1-720p.mp4", "test-sample2-720p.mp4", "test-sample3-720p.mp4"]], | |
inputs=[video_input], | |
) | |
with gr.TabItem("Image"): | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
} | |
) | |
image_state = gr.State( | |
{ | |
"user_name": "", | |
"image_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
} | |
) | |
with gr.Group(elem_classes="gr-monochrome-group", visible=True): | |
with gr.Row(): | |
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): | |
with gr.Row(): | |
erode_kernel_size = gr.Slider(label='Erode Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Erosion on the added mask", | |
interactive=True) | |
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Dilation on the added mask", | |
interactive=True) | |
with gr.Row(): | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations → More details & More time", visible=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) | |
with gr.Row(): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
info="Click to add positive or negative point for target mask", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1) | |
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False) | |
gr.Markdown("---") | |
with gr.Column(): | |
# input image | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
gr.Markdown("## Step1: Upload image") | |
with gr.Column(scale=2): | |
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
image_input = gr.Image(label="Input Image", elem_classes="image") | |
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button") | |
with gr.Column(scale=2): | |
image_info = gr.Textbox(label="Image Info", visible=False) | |
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
with gr.Row(equal_height=True, elem_classes="mask_button_group"): | |
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100) | |
gr.HTML('<hr style="border: none; height: 1.5px; background: linear-gradient(to right, #a566b4, #74a781);margin: 5px 0;">') | |
# output image | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image") | |
foreground_output_button = gr.Button(value="Foreground Output", visible=False, elem_classes="new_button") | |
with gr.Column(scale=2): | |
alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image") | |
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") | |
# first step: get the image information | |
extract_frames_button.click( | |
fn=get_frames_from_image, | |
inputs=[ | |
image_input, image_state | |
], | |
outputs=[image_state, image_info, template_frame, | |
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame, | |
foreground_image_output, alpha_image_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title] | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_image_template, | |
inputs=[image_selection_slider, image_state, interactive_state], | |
outputs=[template_frame, image_state, interactive_state], api_name="select_image") | |
track_pause_number_slider.release(fn=get_end_number, | |
inputs=[track_pause_number_slider, image_state, interactive_state], | |
outputs=[template_frame, interactive_state], api_name="end_image") | |
# click select image to get mask using sam | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[image_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, image_state, interactive_state] | |
) | |
# add different mask | |
add_mask_button.click( | |
fn=add_multi_mask, | |
inputs=[image_state, interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, template_frame, click_state] | |
) | |
remove_mask_button.click( | |
fn=remove_multi_mask, | |
inputs=[interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown] | |
) | |
# image matting | |
matting_button.click( | |
fn=image_matting, | |
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider], | |
outputs=[foreground_image_output, alpha_image_output] | |
) | |
# click to get mask | |
mask_dropdown.change( | |
fn=show_mask, | |
inputs=[image_state, interactive_state, mask_dropdown], | |
outputs=[template_frame] | |
) | |
# clear input | |
image_input.change( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
image_state, | |
interactive_state, | |
click_state, | |
foreground_image_output, alpha_image_output, | |
template_frame, | |
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
image_input.clear( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
image_state, | |
interactive_state, | |
click_state, | |
foreground_image_output, alpha_image_output, | |
template_frame, | |
image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_image_output, alpha_image_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, image_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
# points clear | |
clear_button_click.click( | |
fn = clear_click, | |
inputs = [image_state, click_state,], | |
outputs = [template_frame,click_state], | |
) | |
# set example | |
gr.Markdown("---") | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.jpg", "test-sample1.jpg"]], | |
inputs=[image_input], | |
) | |
gr.Markdown(article) | |
demo.queue() | |
demo.launch(debug=True) |