laiviet's picture
Update for gradio >=4.0.0
96cdbc3 verified
import os
import json
import glob
from collections import defaultdict
import pandas as pd
import gradio as gr
from content import *
from css import *
import glob
ARC = "arc"
HELLASWAG = "hellaswag"
MMLU = "mmlu"
TRUTHFULQA = "truthfulqa"
BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
LANGS = 'ar,bn,ca,da,de,es,eu,fr,gu,hi,hr,hu,hy,id,it,kn,ml,mr,ne,nl,pt,ro,ru,sk,sr,sv,ta,te,uk,vi,zh'.split(',')
LANG_NAME = {
'ar': 'Arabic',
'bn': 'Bengali',
'ca': 'Catalan',
'da': 'Danish',
'de': 'German',
'es': 'Spanish',
'eu': 'Basque',
'fr': 'French',
'gu': 'Gujarati',
'hi': 'Hindi',
'hr': 'Croatian',
'hu': 'Hungarian',
'hy': 'Armenian',
'id': 'Indonesian',
'it': 'Italian',
'kn': 'Kannada',
'ml': 'Malayalam',
'mr': 'Marathi',
'ne': 'Nepali',
'nl': 'Dutch',
'pt': 'Portuguese',
'ro': 'Romanian',
'ru': 'Russian',
'sk': 'Slovak',
'sr': 'Serbian',
'sv': 'Swedish',
'ta': 'Tamil',
'te': 'Telugu',
'uk': 'Ukrainian',
'vi': 'Vietnamese',
'zh': 'Chinese'
}
def collect_results():
performance_dict = defaultdict(dict)
pretrained_models = set()
for file in glob.glob('evals/*/*.json'):
with open(file, 'r') as f:
data = json.load(f)
if 'results' not in data:
continue
if 'config' not in data:
continue
results = data['results']
config = data['config']
if 'model_args' not in config:
continue
model_args = config['model_args'].split(',')
pretrained = [x for x in model_args if x.startswith('pretrained=')]
if len(pretrained) != 1:
continue
pretrained = pretrained[0].split('=')[1]
pretrained = pretrained.split('/')[-1]
pretrained_models.add(pretrained)
for lang_task, perfs in results.items():
task, lang = lang_task.split('_')
assert task in BENCHMARKS
if lang and task:
metric = METRICS[BENCHMARKS.index(task)]
p = round(perfs[metric] * 100, 1)
performance_dict[(pretrained, lang)][task] = p
return performance_dict, pretrained_models
def get_leaderboard_df(performance_dict, pretrained_models):
df = list()
for (pretrained, lang), perfs in performance_dict.items():
lang_name = LANG_NAME[lang]
arc_perf = perfs.get(ARC, 0.0)
hellaswag_perf = perfs.get(HELLASWAG, 0.0)
mmlu_perf = perfs.get(MMLU, 0.0)
truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0)
if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0:
continue
avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1)
notes = ' '.join([pretrained, lang_name])
row = [pretrained, lang_name, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf, notes]
df.append(row)
df = pd.DataFrame.from_records(df, columns=COLS)
df = df.sort_values(by=[LANG_COL, AVERAGE_COL], ascending=False)
df = df[COLS]
return df
def search_table(df, query):
filtered_df = df[df[NOTES_COL].str.contains(query, case=False)]
return filtered_df
MODEL_COL = "Model"
LANG_COL = "Language"
CODE_COL = "Code"
AVERAGE_COL = "Average"
ARC_COL = "ARC (25-shot)"
HELLASWAG_COL = "HellaSwag (0-shot)️"
MMLU_COL = "MMLU (25-shot)"
TRUTHFULQA_COL = "TruthfulQA (0-shot)"
NOTES_COL = "Notes" # For search only
COLS = [MODEL_COL, LANG_COL, CODE_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL, NOTES_COL]
TYPES = ["str", "str", "str", "number", "number", "number", "number", "number", "str"]
args = collect_results()
original_df = get_leaderboard_df(*args)
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
gr.Markdown(HOW_TO, elem_classes="markdown-text")
with gr.Group():
search_bar = gr.Textbox(
placeholder="Search models and languages...", show_label=False, elem_id="search-bar"
)
leaderboard_table = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
# max_rows=5,
elem_id="leaderboard-table",
)
# # Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
# max_rows=5,
visible=False
)
search_bar.change(
search_table,
[hidden_leaderboard_table_for_search, search_bar],
leaderboard_table,
)
gr.Markdown(CREDIT, elem_classes="markdown-text")
gr.Markdown(CITATION, elem_classes="markdown-text")
demo.launch()