File size: 25,952 Bytes
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
 
 
 
e86d87c
065f30a
e86d87c
 
065f30a
 
 
e86d87c
065f30a
e86d87c
065f30a
 
 
 
 
 
 
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
 
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
 
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
e86d87c
065f30a
 
 
 
 
e86d87c
 
 
 
 
 
 
 
 
 
065f30a
 
e86d87c
065f30a
 
 
e86d87c
065f30a
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
 
 
 
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
065f30a
 
 
e86d87c
 
065f30a
e86d87c
 
065f30a
e86d87c
065f30a
 
 
 
 
e86d87c
 
 
065f30a
 
 
 
 
 
 
 
 
 
 
e86d87c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
from langchain_groq import ChatGroq
from langgraph.graph import StateGraph, START, END
from IPython.display import Image, display, Markdown
from typing_extensions import TypedDict
from langgraph.constants import Send
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
import os
import getpass
from typing import Annotated, List, Dict, Any
import operator
from pydantic import BaseModel, Field
from datetime import datetime
import requests
from bs4 import BeautifulSoup
import re
import json
import gradio as gr
from langdetect import detect

# Define models for structured output
class NewsItem(BaseModel):
    title: str = Field(description="Title of the AI news article")
    url: str = Field(description="URL of the news article")
    source: str = Field(description="Source website of the news")
    description: str = Field(description="Brief description of the news article")

class NewsResults(BaseModel):
    news_items: List[NewsItem] = Field(description="List of AI news articles found")

class Subsection(BaseModel):
    title: str = Field(description="Title of the subsection (based on news item title)")
    source: str = Field(description="Source of the news item")
    url: str = Field(description="URL of the news item")
    content: str = Field(description="Content for this subsection")

class Section(BaseModel):
    name: str = Field(description="Name for this section of the blog")
    description: str = Field(description="Description for this section of the blog")
    information: str = Field(description="Information which should be included in this section of the blog")
    subsections: List[Subsection] = Field(description="Subsections for each news item in this category", default=[])

class Sections(BaseModel):
    sections: List[Section] = Field(description="List of sections for this blog")

# State definitions
class NewsState(TypedDict):
    query: str
    date: str
    search_results: List[Dict[str, Any]]
    news_items: List[Dict[str, Any]]
    
class BlogState(TypedDict):
    content: str
    sections: List[Section]
    completed_sections: Annotated[List, operator.add]
    final_report: str

class WorkerState(TypedDict):
    section: Section
    completed_sections: Annotated[List, operator.add]

class ArticleScraperState(TypedDict):
    url: str
    article_content: str

# Helper function to detect English language
def is_english(text):
    # Ensure we have enough text to analyze
    if not text or len(text.strip()) < 50:
        return False
        
    try:
        # Try primary language detection
        return detect(text) == 'en'
    except:
        # If detection fails, use a more robust approach
        common_english_words = ['the', 'and', 'in', 'to', 'of', 'is', 'for', 'with', 'on', 'that', 
                              'this', 'are', 'was', 'be', 'have', 'it', 'not', 'they', 'by', 'from']
        text_lower = text.lower()
        # Count occurrences of common English words
        english_word_count = sum(1 for word in common_english_words if f" {word} " in f" {text_lower} ")
        # Calculate ratio of English words to text length
        text_words = len(text_lower.split())
        if text_words == 0:  # Avoid division by zero
            return False
            
        english_ratio = english_word_count / min(20, text_words)  # Cap at 20 to avoid skew
        return english_word_count >= 5 or english_ratio > 0.25  # More stringent criteria

# News search functions
def search_ai_news(state: NewsState):
    """Search for the latest AI news using Tavily"""
    search_tool = TavilySearchResults(max_results=10)
    
    # Format today's date
    today = state.get("date", datetime.now().strftime("%Y-%m-%d"))
    
    # Create search query with date to get recent news
    query = f"latest artificial intelligence news {today} english"
    
    # Execute search
    search_results = search_tool.invoke({"query": query})
    
    # Filter out YouTube results and non-English content
    filtered_results = []
    for result in search_results:
        if "youtube.com" not in result.get("url", "").lower():
            # Check if content is in English
            content = result.get("content", "") + " " + result.get("title", "")
            if is_english(content):
                filtered_results.append(result)
    
    return {"search_results": filtered_results}

def parse_news_items(state: NewsState):
    """Parse search results into structured news items using a more robust approach"""
    search_results = state["search_results"]
    
    # Format results for the LLM
    formatted_results = "\n\n".join([
        f"Title: {result.get('title', 'No title')}\n"
        f"URL: {result.get('url', 'No URL')}\n"
        f"Content: {result.get('content', 'No content')}"
        for result in search_results
    ])
    
    # Use a direct prompt instead of structured output
    system_prompt = """
    Extract AI news articles from these search results. Filter out any that aren't about artificial intelligence.
    
    For each relevant AI news article, provide:
    - title: The title of the article
    - url: The URL of the article
    - source: The source website of the news
    - description: A brief description of the article
    
    Format your response as a JSON list of objects. Only include the relevant fields, nothing else.
    Example format:
    [
      {
        "title": "New AI Development",
        "url": "https://example.com/news/ai-dev",
        "source": "Example News",
        "description": "Description of the AI development"
      }
    ]
    """
    
    # Get the response as a string
    response = llm.invoke([
        SystemMessage(content=system_prompt),
        HumanMessage(content=f"Here are the search results:\n\n{formatted_results}")
    ])
    
    # Extract the JSON part from the response
    response_text = response.content
    
    # Find JSON list in the response
    json_match = re.search(r'\[\s*\{.*\}\s*\]', response_text, re.DOTALL)
    
    news_items = []
    if json_match:
        try:
            # Parse the JSON text
            news_items = json.loads(json_match.group(0))
        except json.JSONDecodeError:
            # Fallback: create a simple item if JSON parsing fails
            news_items = [{
                "title": "AI News Roundup",
                "url": "https://example.com/ai-news",
                "source": "Various Sources",
                "description": "Compilation of latest AI news from various sources."
            }]
    else:
        # Create a default item if no JSON found
        news_items = [{
            "title": "AI News Roundup",
            "url": "https://example.com/ai-news",
            "source": "Various Sources",
            "description": "Compilation of latest AI news from various sources."
        }]
    
    return {"news_items": news_items}

# Article scraping function
def scrape_article_content(state: ArticleScraperState):
    """Scrape the content from a news article URL"""
    url = state["url"]
    
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        }
        response = requests.get(url, headers=headers, timeout=10)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Extract article content
        article_text = ""
        
        # Try to find the main article content
        article = soup.find('article')
        if article:
            paragraphs = article.find_all('p')
        else:
            # Fallback to all paragraphs
            paragraphs = soup.find_all('p')
        
        # Extract text from paragraphs
        article_text = "\n\n".join([p.get_text().strip() for p in paragraphs])
        
        # Clean up the text
        article_text = re.sub(r'\s+', ' ', article_text).strip()
        
        # Trim to reasonable length for LLM processing
        if len(article_text) > 10000:
            article_text = article_text[:10000] + "..."
        
        # Verify the content is in English
        if not is_english(article_text[:500]):  # Check first 500 chars to save processing time
            return {"article_content": "Content not in English or insufficient text to analyze."}
            
        return {"article_content": article_text}
    
    except Exception as e:
        return {"article_content": f"Error scraping article: {str(e)}"}

# Blog generation functions
def orchestrator(state: BlogState):
    """Orchestrator that generates a plan for the blog based on news items"""
    
    try:
        # Parse the content to extract news items
        content_lines = state['content'].split('\n\n')
        news_items = []
        current_item = {}
        
        for content_block in content_lines:
            if content_block.startswith('TITLE:'):
                # Start of a new item
                if current_item and 'title' in current_item:
                    news_items.append(current_item)
                current_item = {}
                
                lines = content_block.split('\n')
                for line in lines:
                    if line.startswith('TITLE:'):
                        current_item['title'] = line.replace('TITLE:', '').strip()
                    elif line.startswith('SOURCE:'):
                        current_item['source'] = line.replace('SOURCE:', '').strip()
                    elif line.startswith('URL:'):
                        current_item['url'] = line.replace('URL:', '').strip()
                    elif line.startswith('DESCRIPTION:'):
                        current_item['description'] = line.replace('DESCRIPTION:', '').strip()
                    elif line.startswith('CONTENT:'):
                        current_item['content'] = line.replace('CONTENT:', '').strip()
            elif 'content' in current_item:
                # Add to existing content
                current_item['content'] += ' ' + content_block
        
        # Add the last item
        if current_item and 'title' in current_item:
            news_items.append(current_item)
        
        # Group news items by category
        ai_tech_items = []
        ai_business_items = []
        ai_research_items = []
        
        for item in news_items:
            title = item.get('title', '').lower()
            description = item.get('description', '').lower()
            
            # Simple categorization based on keywords
            if any(kw in title + description for kw in ['business', 'market', 'company', 'investment', 'startup']):
                ai_business_items.append(item)
            elif any(kw in title + description for kw in ['research', 'study', 'paper', 'university']):
                ai_research_items.append(item)
            else:
                ai_tech_items.append(item)
        
        # Create sections with subsections
        sections = []
        
        # AI Technology section
        if ai_tech_items:
            tech_subsections = [
                Subsection(
                    title=item['title'],
                    source=item['source'],
                    url=item['url'],
                    content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
                ) for item in ai_tech_items
            ]
            
            sections.append(Section(
                name="AI Technology Developments",
                description="Recent advancements in AI technology and applications",
                information="Cover the latest developments in AI technology.",
                subsections=tech_subsections
            ))
        
        # AI Business section
        if ai_business_items:
            business_subsections = [
                Subsection(
                    title=item['title'],
                    source=item['source'],
                    url=item['url'],
                    content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
                ) for item in ai_business_items
            ]
            
            sections.append(Section(
                name="AI in Business",
                description="How AI is transforming industries and markets",
                information="Focus on business applications and market trends in AI.",
                subsections=business_subsections
            ))
        
        # AI Research section
        if ai_research_items:
            research_subsections = [
                Subsection(
                    title=item['title'],
                    source=item['source'],
                    url=item['url'],
                    content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
                ) for item in ai_research_items
            ]
            
            sections.append(Section(
                name="AI Research and Studies",
                description="Latest research findings and academic work in AI",
                information="Cover recent research papers and studies in AI.",
                subsections=research_subsections
            ))
        
        # If no items were categorized, create a general section
        if not sections:
            general_subsections = [
                Subsection(
                    title=item['title'],
                    source=item['source'],
                    url=item['url'],
                    content=f"{item.get('description', '')} {item.get('content', '')[:500]}..."
                ) for item in news_items
            ]
            
            sections.append(Section(
                name="Latest AI News",
                description="Roundup of the latest AI news from around the web",
                information="Cover a range of AI news topics.",
                subsections=general_subsections
            ))
        
        return {"sections": sections}
    except Exception as e:
        print(f"Error in orchestrator: {str(e)}")
        # Fallback plan if structured output fails
        fallback_sections = [
            Section(
                name="Latest AI Developments",
                description="Overview of recent AI advancements and research",
                information="Summarize the latest AI developments from the provided content.",
                subsections=[]
            )
        ]
        return {"sections": fallback_sections}

def llm_call(state: WorkerState):
    """Worker writes a section of the blog with subsections for each news item"""
    
    section = state['section']
    
    # Generate section header without ID for cleaner markdown
    section_header = f"## {section.name}\n\n{section.description}\n"
    
    # If there are subsections, process each one
    subsections_content = ""
    if section.subsections:
        for idx, subsection in enumerate(section.subsections):
            # Generate subsection using LLM
            subsection_prompt = f"""
Write a detailed subsection about this AI news item:
Title: {subsection.title}
Source: {subsection.source}
URL: {subsection.url}

Content to summarize and expand on:
{subsection.content}

Keep your response focused on the news item and make it engaging. Use markdown formatting.
"""
            
            subsection_content = llm.invoke([
                SystemMessage(content="You are writing a subsection for an AI news blog. Write in a professional but engaging style. Include key details and insights. Use markdown formatting."),
                HumanMessage(content=subsection_prompt)
            ])
            
            # Format subsection with title and source (without ID tags)
            formatted_subsection = f"### {subsection.title}\n\n"
            formatted_subsection += f"*Source: [{subsection.source}]({subsection.url})*\n\n"
            formatted_subsection += subsection_content.content
            
            subsections_content += formatted_subsection + "\n\n"
    else:
        # If no subsections, generate the full section content
        section_content = llm.invoke([
            SystemMessage(content="Write a blog section following the provided name, description, and information. Include no preamble. Use markdown formatting."),
            HumanMessage(content=f"Here is the section name: {section.name}\nDescription: {section.description}\nInformation: {section.information}")
        ])
        subsections_content = section_content.content
    
    # Combine section header and subsections
    complete_section = section_header + subsections_content
    
    # Return the completed section
    return {"completed_sections": [complete_section]}

def synthesizer(state: BlogState):
    """Synthesize full blog from sections with proper formatting and hierarchical TOC"""
    
    # List of completed sections
    completed_sections = state["completed_sections"]
    
    # Format completed sections into a full blog post
    completed_report = "\n\n".join(completed_sections)
    
    # Add title, date, and introduction
    today = datetime.now().strftime("%Y-%m-%d")
    blog_title = f"# AI News Roundup - {today}"
    
    # Generate a brief introduction
    intro = llm.invoke([
        SystemMessage(content="Write a brief introduction for an AI news roundup blog post. Keep it under 100 words. Be engaging and professional."),
        HumanMessage(content=f"Today's date is {today}. Write a brief introduction for an AI news roundup.")
    ])
    
    # Create hierarchical table of contents
    table_of_contents = "## Table of Contents\n\n"
    
    # Find all section headings (## headings)
    section_matches = re.findall(r'## ([^\n]+)', completed_report)
    
    for i, section_name in enumerate(section_matches, 1):
        # Add section to TOC with auto-generated link
        # Create a clean anchor from the section name
        section_anchor = section_name.lower().replace(' ', '-')
        table_of_contents += f"{i}. [{section_name}](#{section_anchor})\n"
        
        # Find all subsections within this section
        section_start = completed_report.find(f"## {section_name}")
        next_section_match = re.search(r'## ', completed_report[section_start+1:])
        if next_section_match:
            section_end = section_start + 1 + next_section_match.start()
            section_text = completed_report[section_start:section_end]
        else:
            section_text = completed_report[section_start:]
        
        # Extract subsection headings
        subsection_matches = re.findall(r'### ([^\n]+)', section_text)
        
        for j, subsection_name in enumerate(subsection_matches, 1):
            # Create a clean anchor from the subsection name
            subsection_anchor = subsection_name.lower().replace(' ', '-').replace(':', '').replace('?', '').replace('!', '').replace('.', '')
            # Add subsection to TOC with proper indentation
            table_of_contents += f"   {i}.{j}. [{subsection_name}](#{subsection_anchor})\n"
    
    final_report = f"{blog_title}\n\n{intro.content}\n\n{table_of_contents}\n\n---\n\n{completed_report}\n\n---\n\n*This AI News Roundup was automatically generated on {today}.*"
    
    return {"final_report": final_report}

# Edge function to create workers for each section
def assign_workers(state: BlogState):
    """Assign a worker to each section in the plan"""
    
    # Kick off section writing in parallel
    return [Send("llm_call", {"section": s}) for s in state["sections"]]

# Main workflow functions
def create_news_search_workflow():
    """Create a workflow for searching and parsing AI news"""
    workflow = StateGraph(NewsState)
    
    # Add nodes
    workflow.add_node("search_ai_news", search_ai_news)
    workflow.add_node("parse_news_items", parse_news_items)
    
    # Add edges
    workflow.add_edge(START, "search_ai_news")
    workflow.add_edge("search_ai_news", "parse_news_items")
    workflow.add_edge("parse_news_items", END)
    
    return workflow.compile()

def create_article_scraper_workflow():
    """Create a workflow for scraping article content"""
    workflow = StateGraph(ArticleScraperState)
    
    # Add node
    workflow.add_node("scrape_article", scrape_article_content)
    
    # Add edges
    workflow.add_edge(START, "scrape_article")
    workflow.add_edge("scrape_article", END)
    
    return workflow.compile()

def create_blog_generator_workflow():
    """Create a workflow for generating the blog"""
    workflow = StateGraph(BlogState)
    
    # Add nodes
    workflow.add_node("orchestrator", orchestrator)
    workflow.add_node("llm_call", llm_call)
    workflow.add_node("synthesizer", synthesizer)
    
    # Add edges
    workflow.add_edge(START, "orchestrator")
    workflow.add_conditional_edges("orchestrator", assign_workers, ["llm_call"])
    workflow.add_edge("llm_call", "synthesizer")
    workflow.add_edge("synthesizer", END)
    
    return workflow.compile()

def generate_ai_news_blog(groq_api_key=None, tavily_api_key=None, date=None):
    """Main function to generate AI news blog"""
    # Set API keys if provided
    if groq_api_key:
        os.environ["GROQ_API_KEY"] = groq_api_key
    if tavily_api_key:
        os.environ["TAVILY_API_KEY"] = tavily_api_key
    
    # Initialize LLM with the API key
    global llm
    llm = ChatGroq(model="qwen-2.5-32b")
    
    # Get date
    if not date:
        today = datetime.now().strftime("%Y-%m-%d")
    else:
        today = date
    
    # Step 1: Search for AI news
    news_search = create_news_search_workflow()
    news_results = news_search.invoke({"query": "latest artificial intelligence news", "date": today})
    
    print(f"Found {len(news_results['news_items'])} AI news items")
    
    # Step 2: Scrape content for each news item
    article_scraper = create_article_scraper_workflow()
    news_contents = []
    
    for item in news_results["news_items"]:
        print(f"Scraping: {item['title']} from {item['source']}")
        result = article_scraper.invoke({"url": item['url']})
        
        # Skip if not in English
        if "not in English" in result["article_content"]:
            print(f"Skipping non-English content: {item['title']}")
            continue
        
        news_contents.append({
            "title": item['title'],
            "url": item['url'],
            "source": item['source'],
            "description": item['description'],
            "content": result["article_content"]
        })
    
    # Check if we have any news items
    if not news_contents:
        return "No English language AI news items found for the specified date. Please try a different date."
        
    # Format news content for the blog generator
    formatted_content = "\n\n".join([
        f"TITLE: {item['title']}\nSOURCE: {item['source']}\nURL: {item['url']}\nDESCRIPTION: {item['description']}\nCONTENT: {item['content'][:2000]}..."
        for item in news_contents
    ])
    
    # Step 3: Generate the blog
    blog_generator = create_blog_generator_workflow()
    blog_result = blog_generator.invoke({
        "content": formatted_content,
        "completed_sections": []
    })
    
    return blog_result["final_report"]

# Gradio UI
def create_gradio_interface():
    """Create a Gradio interface for the AI News Blog Generator"""
    
    def run_generation(groq_key, tavily_key, selected_date):
        if not groq_key or not tavily_key:
            return "Please provide both API keys."
        
        try:
            result = generate_ai_news_blog(groq_key, tavily_key, selected_date)
            return result
        except Exception as e:
            return f"Error generating blog: {str(e)}"
    
    # Create the interface
    with gr.Blocks(title="AI News Blog Generator") as demo:
        gr.Markdown("# AI News Blog Generator")
        gr.Markdown("Generate a daily roundup of AI news articles, categorized by topic.")
        
        with gr.Row():
            with gr.Column():
                groq_key = gr.Textbox(label="Groq API Key", placeholder="Enter your Groq API key", type="password")
                tavily_key = gr.Textbox(label="Tavily API Key", placeholder="Enter your Tavily API key", type="password")
                date_picker = gr.Textbox(label="Date (YYYY-MM-DD)", placeholder="Leave empty for today's date", 
                                        value=datetime.now().strftime("%Y-%m-%d"))
                with gr.Row():
                    generate_button = gr.Button("Generate AI News Blog", variant="primary")
                    clear_button = gr.Button("Clear Output")
            
            with gr.Column():
                status_text = gr.Textbox(label="Status", placeholder="Ready to generate", interactive=False)
                output_md = gr.Markdown("Your AI News Blog will appear here.")
        
        # Add loading state and status updates
        generate_button.click(
            fn=lambda: "Generating AI News Blog... This may take several minutes.",
            inputs=None,
            outputs=status_text,
            queue=False
        ).then(
            fn=run_generation,
            inputs=[groq_key, tavily_key, date_picker],
            outputs=output_md
        ).then(
            fn=lambda: "Blog generation complete!",
            inputs=None,
            outputs=status_text
        )
        
        # Clear output
        clear_button.click(
            fn=lambda: ("Ready to generate", ""),
            inputs=None,
            outputs=[status_text, output_md]
        )
    
    return demo

# Run the entire pipeline
if __name__ == "__main__":
    try:
        # Create and launch the Gradio interface
        demo = create_gradio_interface()
        demo.launch()
        
    except Exception as e:
        print(f"Error running the pipeline: {str(e)}")