Phoenix21 commited on
Commit
5659335
·
verified ·
1 Parent(s): 67c4c64

updated app.py for the input handling

Browse files
Files changed (1) hide show
  1. app.py +60 -6
app.py CHANGED
@@ -67,14 +67,61 @@ def ensure_complete_sentences(text):
67
  return ' '.join(s.strip() for s in sentences)
68
  return text
69
 
 
70
  def is_valid_input(text):
 
 
 
 
71
  if not text or text.strip() == "":
72
- return False
 
73
  if not re.search('[A-Za-z]', text):
74
- return False
 
75
  if len(text.strip()) < 5:
76
- return False
77
- return True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
  def initialize_llm(model, temperature, max_tokens):
80
  prompt_allocation = int(max_tokens * 0.2)
@@ -109,10 +156,16 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
109
 
110
  retriever = vectorstore.as_retriever()
111
 
 
112
  custom_prompt_template = PromptTemplate(
113
  input_variables=["context", "question"],
114
  template="""
115
  You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
 
 
 
 
 
116
  Context:
117
  {context}
118
  Question:
@@ -136,8 +189,9 @@ max_tokens = 500
136
  rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
137
 
138
  def answer_question(model, temperature, max_tokens, question):
139
- if not is_valid_input(question):
140
- return "Please provide a valid, meaningful question."
 
141
  if rag_chain is None:
142
  return "The system is currently unavailable. Please try again later."
143
  try:
 
67
  return ' '.join(s.strip() for s in sentences)
68
  return text
69
 
70
+ # --- Added: Handling "Not Feasible" Keywords and Gibberish Inputs ---
71
  def is_valid_input(text):
72
+ """
73
+ Validate the user's input question.
74
+ Returns a tuple (is_valid, message).
75
+ """
76
  if not text or text.strip() == "":
77
+ return False, "Input cannot be empty. Please provide a meaningful question."
78
+
79
  if not re.search('[A-Za-z]', text):
80
+ return False, "Input must contain alphabetic characters."
81
+
82
  if len(text.strip()) < 5:
83
+ return False, "Input is too short. Please provide a more detailed question."
84
+
85
+ # Define not feasible keywords
86
+ not_feasible_keywords = [
87
+ "illegal", "harmful", "dangerous", "unethical", "inappropriate",
88
+ "forbidden", "restricted", "banned", "prohibited", "secret"
89
+ ]
90
+
91
+ # Check for not feasible keywords (case-insensitive)
92
+ pattern = re.compile(r'\b(' + '|'.join(not_feasible_keywords) + r')\b', re.IGNORECASE)
93
+ if pattern.search(text):
94
+ return False, "Your question contains restricted or inappropriate content. Please modify your query."
95
+
96
+ # --- Added: Gibberish Detection ---
97
+ # Simple heuristic: Check the ratio of alphabetic characters to total characters
98
+ total_chars = len(text)
99
+ alpha_chars = len(re.findall(r'[A-Za-z]', text))
100
+ ratio = alpha_chars / total_chars if total_chars > 0 else 0
101
+
102
+ if ratio < 0.6:
103
+ return False, "Your input appears to be gibberish or nonsensical. Please enter a clear and meaningful question."
104
+
105
+ # Additionally, check for a minimum number of recognizable words
106
+ words = re.findall(r'\b\w+\b', text)
107
+ recognized_words = [word for word in words if word.lower() in recognized_words_set]
108
+
109
+ if len(recognized_words) < max(3, len(words) * 0.4):
110
+ return False, "Your input contains too many unrecognizable words. Please enter a clear and meaningful question."
111
+
112
+ return True, "Valid input."
113
+
114
+ # Predefined set of common English words for basic gibberish detection
115
+ # In a production environment, consider using a more comprehensive dictionary or language model
116
+ recognized_words_set = set([
117
+ 'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'I',
118
+ 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at',
119
+ 'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her',
120
+ 'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there',
121
+ 'their', 'what', 'so', 'up', 'out', 'if', 'about', 'who', 'get',
122
+ 'which', 'go', 'me'
123
+ # Add more words as needed
124
+ ])
125
 
126
  def initialize_llm(model, temperature, max_tokens):
127
  prompt_allocation = int(max_tokens * 0.2)
 
156
 
157
  retriever = vectorstore.as_retriever()
158
 
159
+ # --- Improved Prompt Template ---
160
  custom_prompt_template = PromptTemplate(
161
  input_variables=["context", "question"],
162
  template="""
163
  You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
164
+
165
+ If the question contains restricted or inappropriate content, respond with a polite message indicating that you cannot assist with that request.
166
+
167
+ If the question appears to be gibberish or nonsensical, respond with a polite message requesting clarification or a more coherent question.
168
+
169
  Context:
170
  {context}
171
  Question:
 
189
  rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
190
 
191
  def answer_question(model, temperature, max_tokens, question):
192
+ is_valid, message = is_valid_input(question)
193
+ if not is_valid:
194
+ return message
195
  if rag_chain is None:
196
  return "The system is currently unavailable. Please try again later."
197
  try: