Spaces:
Sleeping
Sleeping
updated app.py for the input handling
Browse files
app.py
CHANGED
@@ -67,14 +67,61 @@ def ensure_complete_sentences(text):
|
|
67 |
return ' '.join(s.strip() for s in sentences)
|
68 |
return text
|
69 |
|
|
|
70 |
def is_valid_input(text):
|
|
|
|
|
|
|
|
|
71 |
if not text or text.strip() == "":
|
72 |
-
return False
|
|
|
73 |
if not re.search('[A-Za-z]', text):
|
74 |
-
return False
|
|
|
75 |
if len(text.strip()) < 5:
|
76 |
-
return False
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def initialize_llm(model, temperature, max_tokens):
|
80 |
prompt_allocation = int(max_tokens * 0.2)
|
@@ -109,10 +156,16 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
|
|
109 |
|
110 |
retriever = vectorstore.as_retriever()
|
111 |
|
|
|
112 |
custom_prompt_template = PromptTemplate(
|
113 |
input_variables=["context", "question"],
|
114 |
template="""
|
115 |
You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
|
|
|
|
|
|
|
|
|
|
|
116 |
Context:
|
117 |
{context}
|
118 |
Question:
|
@@ -136,8 +189,9 @@ max_tokens = 500
|
|
136 |
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
137 |
|
138 |
def answer_question(model, temperature, max_tokens, question):
|
139 |
-
|
140 |
-
|
|
|
141 |
if rag_chain is None:
|
142 |
return "The system is currently unavailable. Please try again later."
|
143 |
try:
|
|
|
67 |
return ' '.join(s.strip() for s in sentences)
|
68 |
return text
|
69 |
|
70 |
+
# --- Added: Handling "Not Feasible" Keywords and Gibberish Inputs ---
|
71 |
def is_valid_input(text):
|
72 |
+
"""
|
73 |
+
Validate the user's input question.
|
74 |
+
Returns a tuple (is_valid, message).
|
75 |
+
"""
|
76 |
if not text or text.strip() == "":
|
77 |
+
return False, "Input cannot be empty. Please provide a meaningful question."
|
78 |
+
|
79 |
if not re.search('[A-Za-z]', text):
|
80 |
+
return False, "Input must contain alphabetic characters."
|
81 |
+
|
82 |
if len(text.strip()) < 5:
|
83 |
+
return False, "Input is too short. Please provide a more detailed question."
|
84 |
+
|
85 |
+
# Define not feasible keywords
|
86 |
+
not_feasible_keywords = [
|
87 |
+
"illegal", "harmful", "dangerous", "unethical", "inappropriate",
|
88 |
+
"forbidden", "restricted", "banned", "prohibited", "secret"
|
89 |
+
]
|
90 |
+
|
91 |
+
# Check for not feasible keywords (case-insensitive)
|
92 |
+
pattern = re.compile(r'\b(' + '|'.join(not_feasible_keywords) + r')\b', re.IGNORECASE)
|
93 |
+
if pattern.search(text):
|
94 |
+
return False, "Your question contains restricted or inappropriate content. Please modify your query."
|
95 |
+
|
96 |
+
# --- Added: Gibberish Detection ---
|
97 |
+
# Simple heuristic: Check the ratio of alphabetic characters to total characters
|
98 |
+
total_chars = len(text)
|
99 |
+
alpha_chars = len(re.findall(r'[A-Za-z]', text))
|
100 |
+
ratio = alpha_chars / total_chars if total_chars > 0 else 0
|
101 |
+
|
102 |
+
if ratio < 0.6:
|
103 |
+
return False, "Your input appears to be gibberish or nonsensical. Please enter a clear and meaningful question."
|
104 |
+
|
105 |
+
# Additionally, check for a minimum number of recognizable words
|
106 |
+
words = re.findall(r'\b\w+\b', text)
|
107 |
+
recognized_words = [word for word in words if word.lower() in recognized_words_set]
|
108 |
+
|
109 |
+
if len(recognized_words) < max(3, len(words) * 0.4):
|
110 |
+
return False, "Your input contains too many unrecognizable words. Please enter a clear and meaningful question."
|
111 |
+
|
112 |
+
return True, "Valid input."
|
113 |
+
|
114 |
+
# Predefined set of common English words for basic gibberish detection
|
115 |
+
# In a production environment, consider using a more comprehensive dictionary or language model
|
116 |
+
recognized_words_set = set([
|
117 |
+
'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'I',
|
118 |
+
'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at',
|
119 |
+
'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her',
|
120 |
+
'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there',
|
121 |
+
'their', 'what', 'so', 'up', 'out', 'if', 'about', 'who', 'get',
|
122 |
+
'which', 'go', 'me'
|
123 |
+
# Add more words as needed
|
124 |
+
])
|
125 |
|
126 |
def initialize_llm(model, temperature, max_tokens):
|
127 |
prompt_allocation = int(max_tokens * 0.2)
|
|
|
156 |
|
157 |
retriever = vectorstore.as_retriever()
|
158 |
|
159 |
+
# --- Improved Prompt Template ---
|
160 |
custom_prompt_template = PromptTemplate(
|
161 |
input_variables=["context", "question"],
|
162 |
template="""
|
163 |
You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
|
164 |
+
|
165 |
+
If the question contains restricted or inappropriate content, respond with a polite message indicating that you cannot assist with that request.
|
166 |
+
|
167 |
+
If the question appears to be gibberish or nonsensical, respond with a polite message requesting clarification or a more coherent question.
|
168 |
+
|
169 |
Context:
|
170 |
{context}
|
171 |
Question:
|
|
|
189 |
rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
|
190 |
|
191 |
def answer_question(model, temperature, max_tokens, question):
|
192 |
+
is_valid, message = is_valid_input(question)
|
193 |
+
if not is_valid:
|
194 |
+
return message
|
195 |
if rag_chain is None:
|
196 |
return "The system is currently unavailable. Please try again later."
|
197 |
try:
|