Phoenix21 commited on
Commit
f5296e8
·
verified ·
1 Parent(s): 5659335

overly restricted error

Browse files
Files changed (1) hide show
  1. app.py +11 -66
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import os
2
  import logging
3
  import re
4
- from langchain_community.vectorstores import Chroma # Updated import
5
  from langchain_huggingface import HuggingFaceEmbeddings
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from langchain_groq import ChatGroq
@@ -61,67 +61,22 @@ def load_documents(file_paths):
61
  logger.error(f"Error processing file {file_path}: {e}")
62
  return docs
63
 
64
- def ensure_complete_sentences(text):
65
- sentences = re.findall(r'[^.!?]*[.!?]', text)
66
- if sentences:
67
- return ' '.join(s.strip() for s in sentences)
68
- return text
69
 
70
- # --- Added: Handling "Not Feasible" Keywords and Gibberish Inputs ---
71
  def is_valid_input(text):
72
- """
73
- Validate the user's input question.
74
- Returns a tuple (is_valid, message).
75
- """
76
  if not text or text.strip() == "":
77
  return False, "Input cannot be empty. Please provide a meaningful question."
78
-
79
- if not re.search('[A-Za-z]', text):
80
- return False, "Input must contain alphabetic characters."
81
-
82
  if len(text.strip()) < 5:
83
  return False, "Input is too short. Please provide a more detailed question."
84
-
85
- # Define not feasible keywords
86
- not_feasible_keywords = [
87
- "illegal", "harmful", "dangerous", "unethical", "inappropriate",
88
- "forbidden", "restricted", "banned", "prohibited", "secret"
89
- ]
90
-
91
- # Check for not feasible keywords (case-insensitive)
92
- pattern = re.compile(r'\b(' + '|'.join(not_feasible_keywords) + r')\b', re.IGNORECASE)
93
- if pattern.search(text):
94
- return False, "Your question contains restricted or inappropriate content. Please modify your query."
95
-
96
- # --- Added: Gibberish Detection ---
97
- # Simple heuristic: Check the ratio of alphabetic characters to total characters
98
- total_chars = len(text)
99
- alpha_chars = len(re.findall(r'[A-Za-z]', text))
100
- ratio = alpha_chars / total_chars if total_chars > 0 else 0
101
-
102
- if ratio < 0.6:
103
- return False, "Your input appears to be gibberish or nonsensical. Please enter a clear and meaningful question."
104
-
105
- # Additionally, check for a minimum number of recognizable words
106
  words = re.findall(r'\b\w+\b', text)
107
- recognized_words = [word for word in words if word.lower() in recognized_words_set]
108
-
109
- if len(recognized_words) < max(3, len(words) * 0.4):
110
- return False, "Your input contains too many unrecognizable words. Please enter a clear and meaningful question."
111
-
112
- return True, "Valid input."
113
 
114
- # Predefined set of common English words for basic gibberish detection
115
- # In a production environment, consider using a more comprehensive dictionary or language model
116
- recognized_words_set = set([
117
- 'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'I',
118
- 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you', 'do', 'at',
119
- 'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her',
120
- 'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there',
121
- 'their', 'what', 'so', 'up', 'out', 'if', 'about', 'who', 'get',
122
- 'which', 'go', 'me'
123
- # Add more words as needed
124
- ])
125
 
126
  def initialize_llm(model, temperature, max_tokens):
127
  prompt_allocation = int(max_tokens * 0.2)
@@ -152,20 +107,13 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
152
  embedding=embedding_model,
153
  persist_directory="/tmp/chroma_db"
154
  )
155
- # vectorstore.persist() # Deprecated in Chroma 0.4.x
156
 
157
  retriever = vectorstore.as_retriever()
158
 
159
- # --- Improved Prompt Template ---
160
  custom_prompt_template = PromptTemplate(
161
  input_variables=["context", "question"],
162
  template="""
163
  You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
164
-
165
- If the question contains restricted or inappropriate content, respond with a polite message indicating that you cannot assist with that request.
166
-
167
- If the question appears to be gibberish or nonsensical, respond with a polite message requesting clarification or a more coherent question.
168
-
169
  Context:
170
  {context}
171
  Question:
@@ -196,10 +144,7 @@ def answer_question(model, temperature, max_tokens, question):
196
  return "The system is currently unavailable. Please try again later."
197
  try:
198
  answer = rag_chain.run(question)
199
- # Remove or modify ensure_complete_sentences if necessary
200
- # complete_answer = ensure_complete_sentences(answer)
201
- complete_answer = answer
202
- return complete_answer
203
  except Exception as e_inner:
204
  logger.error(f"Error: {e_inner}")
205
  return "An error occurred while processing your request."
@@ -215,7 +160,7 @@ interface = gr.Interface(
215
  gr.Slider(label="Max Tokens", minimum=200, maximum=2048, step=1, value=max_tokens),
216
  gr.Textbox(label="Question", placeholder="e.g., What is box breathing and how does it help reduce anxiety?")
217
  ],
218
- outputs=gr.Markdown(label="Answer"), # Updated output component
219
  title="Daily Wellness AI",
220
  description="Ask questions about daily wellness and receive a concise, complete answer.",
221
  examples=[
 
1
  import os
2
  import logging
3
  import re
4
+ from langchain_community.vectorstores import Chroma
5
  from langchain_huggingface import HuggingFaceEmbeddings
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from langchain_groq import ChatGroq
 
61
  logger.error(f"Error processing file {file_path}: {e}")
62
  return docs
63
 
64
+ # Simplify input validation
 
 
 
 
65
 
 
66
  def is_valid_input(text):
67
+ """Validate the user's input question."""
 
 
 
68
  if not text or text.strip() == "":
69
  return False, "Input cannot be empty. Please provide a meaningful question."
70
+
 
 
 
71
  if len(text.strip()) < 5:
72
  return False, "Input is too short. Please provide a more detailed question."
73
+
74
+ # Gibberish detection: Ensure text contains valid words
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  words = re.findall(r'\b\w+\b', text)
76
+ if len(words) < 3: # Require at least three recognizable words
77
+ return False, "Input appears incomplete. Please provide a more meaningful question."
 
 
 
 
78
 
79
+ return True, "Valid input."
 
 
 
 
 
 
 
 
 
 
80
 
81
  def initialize_llm(model, temperature, max_tokens):
82
  prompt_allocation = int(max_tokens * 0.2)
 
107
  embedding=embedding_model,
108
  persist_directory="/tmp/chroma_db"
109
  )
 
110
 
111
  retriever = vectorstore.as_retriever()
112
 
 
113
  custom_prompt_template = PromptTemplate(
114
  input_variables=["context", "question"],
115
  template="""
116
  You are an AI assistant specialized in daily wellness. Provide a concise, thorough, and stand-alone answer to the user's question based on the given context. Include relevant examples or schedules where beneficial. **When listing steps or guidelines, format them as a numbered list with appropriate markdown formatting.** The final answer should be coherent, self-contained, and end with a complete sentence.
 
 
 
 
 
117
  Context:
118
  {context}
119
  Question:
 
144
  return "The system is currently unavailable. Please try again later."
145
  try:
146
  answer = rag_chain.run(question)
147
+ return answer.strip()
 
 
 
148
  except Exception as e_inner:
149
  logger.error(f"Error: {e_inner}")
150
  return "An error occurred while processing your request."
 
160
  gr.Slider(label="Max Tokens", minimum=200, maximum=2048, step=1, value=max_tokens),
161
  gr.Textbox(label="Question", placeholder="e.g., What is box breathing and how does it help reduce anxiety?")
162
  ],
163
+ outputs=gr.Markdown(label="Answer"),
164
  title="Daily Wellness AI",
165
  description="Ask questions about daily wellness and receive a concise, complete answer.",
166
  examples=[