File size: 1,339 Bytes
028f06a
 
 
 
 
8087bbe
028f06a
 
 
 
 
 
 
8087bbe
 
028f06a
8087bbe
028f06a
 
 
8087bbe
 
 
 
 
 
 
028f06a
 
8087bbe
028f06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7860df6
8087bbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import torch
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
import uvicorn

class Query(BaseModel):
    text: str

app = FastAPI(title="Financial Chatbot API")

# Load base model
base_model_name = "meta-llama/Meta-Llama-3-8B"  # Update this if different base model
model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    device_map="auto",
    trust_remote_code=True
)

# Load adapter from your checkpoint
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
model = PeftModel.from_pretrained(model, peft_model_id)

# Load tokenizer from base model
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

# Rest of your code remains the same...
chat_pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=256,
    temperature=0.7,
    top_p=0.95,
)

@app.post("/generate")
def generate(query: Query):
    prompt = f"Question: {query.text}\nAnswer: "
    response = chat_pipe(prompt)[0]["generated_text"]
    return {"response": response}

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)