Spaces:
Runtime error
Runtime error
File size: 1,339 Bytes
028f06a 8087bbe 028f06a 8087bbe 028f06a 8087bbe 028f06a 8087bbe 028f06a 8087bbe 028f06a 7860df6 8087bbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
import torch
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
import uvicorn
class Query(BaseModel):
text: str
app = FastAPI(title="Financial Chatbot API")
# Load base model
base_model_name = "meta-llama/Meta-Llama-3-8B" # Update this if different base model
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
trust_remote_code=True
)
# Load adapter from your checkpoint
peft_model_id = "Phoenix21/llama-3-2-3b-finetuned-finance_checkpoint2"
model = PeftModel.from_pretrained(model, peft_model_id)
# Load tokenizer from base model
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
# Rest of your code remains the same...
chat_pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
temperature=0.7,
top_p=0.95,
)
@app.post("/generate")
def generate(query: Query):
prompt = f"Question: {query.text}\nAnswer: "
response = chat_pipe(prompt)[0]["generated_text"]
return {"response": response}
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port) |