File size: 12,344 Bytes
a004b34 5ec7b71 a004b34 5ec7b71 a004b34 7e35bff a004b34 7e35bff 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 5ec7b71 a004b34 7e35bff a004b34 5ec7b71 a004b34 5ec7b71 a004b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# app.py
import os
import getpass
import pandas as pd
import chardet
import logging
import gradio as gr
from sentence_transformers import SentenceTransformer, util, CrossEncoder
from langchain_community.retrievers import BM25Retriever
from smolagents import (
CodeAgent,
HfApiModel,
DuckDuckGoSearchTool,
Tool,
ManagedAgent,
LiteLLMModel
)
# --------------------------------------------------------------------------------
# Set up logging
# --------------------------------------------------------------------------------
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("Daily Wellness AI Guru")
# --------------------------------------------------------------------------------
# Ensure Hugging Face API Token
# --------------------------------------------------------------------------------
# In a Hugging Face Space, you can set HF_API_TOKEN as a secret variable.
# If it's not set, you could prompt for it locally, but in Spaces,
# you typically wouldn't do getpass. We'll leave the logic here as fallback.
if 'HF_API_TOKEN' not in os.environ or not os.environ['HF_API_TOKEN']:
os.environ['HF_API_TOKEN'] = getpass.getpass('Enter your Hugging Face API Token: ')
else:
print("HF_API_TOKEN is already set.")
# --------------------------------------------------------------------------------
# CSV Loading and Processing
# --------------------------------------------------------------------------------
def load_csv(file_path):
"""
Load and process a CSV file into two lists: questions and answers.
"""
try:
# Detect the encoding of the file
with open(file_path, 'rb') as f:
result = chardet.detect(f.read())
encoding = result['encoding']
# Load the CSV using the detected encoding
data = pd.read_csv(file_path, encoding=encoding)
# Validate that the required columns are present
if 'Question' not in data.columns or 'Answers' not in data.columns:
raise ValueError("The CSV file must contain 'Question' and 'Answers' columns.")
# Drop any rows with missing values in 'Question' or 'Answers'
data = data.dropna(subset=['Question', 'Answers'])
# Extract questions and answers
questions = data['Question'].tolist()
answers = data['Answers'].tolist()
logger.info(f"Loaded {len(questions)} questions and {len(answers)} answers from {file_path}")
return questions, answers
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
return [], []
# --------------------------------------------------------------------------------
# Load the AIChatbot.csv file
# --------------------------------------------------------------------------------
file_path = "AIChatbot.csv" # Ensure this file is in the same directory as app.py
corpus_questions, corpus_answers = load_csv(file_path)
if not corpus_questions:
raise ValueError(f"Failed to load questions from {file_path}.")
# --------------------------------------------------------------------------------
# Embedding Model
# --------------------------------------------------------------------------------
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
embedding_model = SentenceTransformer(embedding_model_name)
logger.info(f"Loaded sentence embedding model: {embedding_model_name}")
# Encode Questions (for retrieval)
question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
# --------------------------------------------------------------------------------
# Cross-Encoder for Re-Ranking
# --------------------------------------------------------------------------------
cross_encoder_model_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
cross_encoder = CrossEncoder(cross_encoder_model_name)
logger.info(f"Loaded cross-encoder model: {cross_encoder_model_name}")
# --------------------------------------------------------------------------------
# Retrieval + Re-ranking Class
# --------------------------------------------------------------------------------
class EmbeddingRetriever:
def __init__(self, questions, answers, embeddings, model, cross_encoder):
self.questions = questions
self.answers = answers
self.embeddings = embeddings
self.model = model
self.cross_encoder = cross_encoder
def retrieve(self, query, top_k=3):
# Compute query embedding
query_embedding = self.model.encode(query, convert_to_tensor=True)
scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
# Combine data
scored_data = list(zip(self.questions, self.answers, scores))
# Sort by best scores
scored_data = sorted(scored_data, key=lambda x: x[2], reverse=True)
# Take top_k
top_candidates = scored_data[:top_k]
# Cross-encode re-rank
cross_inputs = [[query, candidate[0]] for candidate in top_candidates]
cross_scores = self.cross_encoder.predict(cross_inputs)
reranked = sorted(
zip(top_candidates, cross_scores),
key=lambda x: x[1],
reverse=True
)
# The best candidate
best_candidate = reranked[0][0] # (question, answer, score)
best_answer = best_candidate[1]
return best_answer
retriever = EmbeddingRetriever(
questions=corpus_questions,
answers=corpus_answers,
embeddings=question_embeddings,
model=embedding_model,
cross_encoder=cross_encoder
)
# --------------------------------------------------------------------------------
# Simple Answer Expander (Without custom sampling parameters)
# --------------------------------------------------------------------------------
class AnswerExpander:
def __init__(self, model: HfApiModel):
self.model = model
def expand(self, question: str, short_answer: str) -> str:
"""
Prompt the LLM to provide a more creative, brand-aligned answer.
"""
prompt = (
"You are Daily Wellness AI, a friendly and creative wellness expert. "
"The user has a question about well-being. Provide an encouraging, day-to-day "
"wellness perspective. Be gentle, uplifting, and brand-aligned.\n\n"
f"Question: {question}\n"
f"Current short answer: {short_answer}\n\n"
"Please rephrase and expand with more detail, wellness tips, daily-life "
"applications, and an optimistic tone. Keep it informal, friendly, and end "
"with a short inspirational note.\n"
)
try:
expanded_answer = self.model.run(prompt)
return expanded_answer.strip()
except Exception as e:
logger.error(f"Failed to expand answer: {e}")
return short_answer
# NOTE: We are using a basic HfApiModel here (no custom sampling).
expander_model = HfApiModel()
answer_expander = AnswerExpander(expander_model)
# --------------------------------------------------------------------------------
# Enhanced Retriever Tool
# --------------------------------------------------------------------------------
from smolagents import Tool
class RetrieverTool(Tool):
name = "retriever_tool"
description = "Uses semantic search + cross-encoder re-ranking to retrieve the best answer."
inputs = {
"query": {
"type": "string",
"description": "User query for retrieving relevant information.",
}
}
output_type = "string"
def __init__(self, retriever, expander):
super().__init__()
self.retriever = retriever
self.expander = expander
def forward(self, query):
best_answer = self.retriever.retrieve(query, top_k=3)
if best_answer:
# If short, expand it
if len(best_answer.strip()) < 80:
logger.info("Answer is short. Expanding with LLM.")
best_answer = self.expander.expand(query, best_answer)
return best_answer
return "No relevant information found."
retriever_tool = RetrieverTool(retriever, answer_expander)
# --------------------------------------------------------------------------------
# DuckDuckGo (Web) Fallback
# --------------------------------------------------------------------------------
search_tool = DuckDuckGoSearchTool()
# --------------------------------------------------------------------------------
# Managed Agents
# --------------------------------------------------------------------------------
from smolagents import ManagedAgent, CodeAgent, LiteLLMModel
retriever_agent = ManagedAgent(
agent=CodeAgent(tools=[retriever_tool], model=LiteLLMModel("groq/llama3-8b-8192")),
name="retriever_agent",
description="Retrieves answers from the local knowledge base (CSV file)."
)
web_agent = ManagedAgent(
agent=CodeAgent(tools=[search_tool], model=HfApiModel()),
name="web_search_agent",
description="Performs web searches if the local knowledge base doesn't have an answer."
)
# --------------------------------------------------------------------------------
# Manager Agent to Orchestrate
# --------------------------------------------------------------------------------
manager_agent = CodeAgent(
tools=[],
model=HfApiModel(),
managed_agents=[retriever_agent, web_agent],
verbose=True
)
# --------------------------------------------------------------------------------
# Gradio Interface
# --------------------------------------------------------------------------------
def gradio_interface(query):
try:
logger.info(f"User query: {query}")
# 1) Query local knowledge base
retriever_response = retriever_tool.forward(query)
if retriever_response != "No relevant information found.":
logger.info("Provided answer from local DB (possibly expanded).")
return (
f"Hello! This is **Daily Wellness AI**.\n\n"
f"{retriever_response}\n\n"
"Disclaimer: This is general wellness information, "
"not a substitute for professional medical advice.\n\n"
"Wishing you a calm and wonderful day!"
)
# 2) Fallback to Web if no relevant local info
logger.info("Falling back to web search.")
web_response = web_agent.run(query)
if web_response:
logger.info("Response retrieved from the web.")
return (
f"Hello! This is **Daily Wellness AI**.\n\n"
f"{web_response.strip()}\n\n"
"Disclaimer: This is general wellness information, "
"not a substitute for professional medical advice.\n\n"
"Wishing you a calm and wonderful day!"
)
# 3) Default fallback
logger.info("No response found from any source.")
return (
"Hello! This is **Daily Wellness AI**.\n\n"
"I'm sorry, I couldn't find an answer to your question. "
"Please try rephrasing or ask something else.\n\n"
"Take care, and have a wonderful day!"
)
except Exception as e:
logger.error(f"Error processing query: {e}")
return "**An error occurred while processing your request. Please try again later.**"
# --------------------------------------------------------------------------------
# Launch Gradio App
# --------------------------------------------------------------------------------
interface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(
label="Ask Daily Wellness AI",
placeholder="e.g., What is box breathing?"
),
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
title="Daily Wellness AI Guru Chatbot",
description=(
"Ask wellness-related questions to get detailed, creative answers from "
"our knowledge base—expanded by an LLM if needed—or from the web. "
"We aim to bring calm and positivity to your day."
),
theme="compact"
)
def main():
interface.launch(server_name="0.0.0.0", server_port=7860, debug=True)
# If running in a local environment, we can also just call main()
if __name__ == "__main__":
main()
|