Phoenix21 commited on
Commit
19739ea
·
verified ·
1 Parent(s): 1b5e3e9

fix: Correct handle_query prompts to use plain text and prevent internal instructions in user responses

Browse files

- Updated the handle_query function to construct prompts as plain text strings without using dictionaries.
- Refined prompt instructions to ensure internal instructions are not included in user-facing answers.
- Removed any conversational preambles that could be echoed back by the LLM.
- Ensured that the GeminiLLM class remains unchanged and sends prompts as strings.
- Enabled public link creation by setting `share=True` in Gradio's launch method.
- Enhanced logging to aid in debugging prompt and response handling.

Files changed (1) hide show
  1. app.py +416 -0
app.py CHANGED
@@ -1,3 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def handle_query(query: str, detail: bool = False) -> str:
2
  """
3
  Main function to process the query.
@@ -87,3 +447,59 @@ def handle_query(query: str, detail: bool = False) -> str:
87
  logger.error(f"Error handling query: {e}")
88
  logger.debug("Exception details:", exc_info=True)
89
  return "An error occurred while processing your request."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+
3
+ import os
4
+ import pandas as pd
5
+ import chardet
6
+ import logging
7
+ import gradio as gr
8
+ import json
9
+ import hashlib
10
+ import numpy as np # ADDED for easy array handling
11
+ from typing import Optional, List, Tuple, ClassVar, Dict
12
+
13
+ from sentence_transformers import SentenceTransformer, util, CrossEncoder
14
+ from langchain.llms.base import LLM
15
+ import google.generativeai as genai
16
+
17
+ # Import smolagents components
18
+ from smolagents import CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, ManagedAgent
19
+
20
+ ###############################################################################
21
+ # 1) Logging Setup
22
+ ###############################################################################
23
+ logging.basicConfig(level=logging.INFO)
24
+ logger = logging.getLogger("Daily Wellness AI")
25
+
26
+ ###############################################################################
27
+ # 2) API Key Handling and Enhanced GeminiLLM Class
28
+ ###############################################################################
29
+ def clean_api_key(key: str) -> str:
30
+ """Remove non-ASCII characters and strip whitespace from the API key."""
31
+ return ''.join(c for c in key if ord(c) < 128).strip()
32
+
33
+ # Load the GEMINI API key from environment variables
34
+ gemini_api_key = os.environ.get("GEMINI_API_KEY")
35
+
36
+ if not gemini_api_key:
37
+ logger.error("GEMINI_API_KEY environment variable not set.")
38
+ raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")
39
+
40
+ gemini_api_key = clean_api_key(gemini_api_key)
41
+ logger.info("GEMINI API Key loaded successfully.")
42
+
43
+ # Configure Google Generative AI
44
+ try:
45
+ genai.configure(api_key=gemini_api_key)
46
+ logger.info("Configured Google Generative AI with provided API key.")
47
+ except Exception as e:
48
+ logger.error(f"Failed to configure Google Generative AI: {e}")
49
+ raise e
50
+
51
+ class GeminiLLM(LLM):
52
+ model_name: ClassVar[str] = "gemini-2.0-flash-exp"
53
+ temperature: float = 0.7
54
+ top_p: float = 0.95
55
+ top_k: int = 40
56
+ max_tokens: int = 2048
57
+
58
+ @property
59
+ def _llm_type(self) -> str:
60
+ return "custom_gemini"
61
+
62
+ def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
63
+ generation_config = {
64
+ "temperature": self.temperature,
65
+ "top_p": self.top_p,
66
+ "top_k": self.top_k,
67
+ "max_output_tokens": self.max_tokens,
68
+ }
69
+
70
+ try:
71
+ logger.debug(f"Initializing GenerativeModel with config: {generation_config}")
72
+ model = genai.GenerativeModel(
73
+ model_name=self.model_name,
74
+ generation_config=generation_config,
75
+ )
76
+ logger.debug("GenerativeModel initialized successfully.")
77
+
78
+ chat_session = model.start_chat(history=[])
79
+ logger.debug("Chat session started.")
80
+
81
+ response = chat_session.send_message(prompt)
82
+ logger.debug(f"Prompt sent to model: {prompt}")
83
+ logger.debug(f"Raw response received: {response.text}")
84
+
85
+ return response.text
86
+ except Exception as e:
87
+ logger.error(f"Error generating response with GeminiLLM: {e}")
88
+ logger.debug("Exception details:", exc_info=True)
89
+ raise e
90
+
91
+ # Instantiate the GeminiLLM globally
92
+ llm = GeminiLLM()
93
+
94
+ ###############################################################################
95
+ # 3) CSV Loading and Processing
96
+ ###############################################################################
97
+ def load_csv(file_path: str):
98
+ try:
99
+ if not os.path.isfile(file_path):
100
+ logger.error(f"CSV file does not exist: {file_path}")
101
+ return [], []
102
+
103
+ with open(file_path, 'rb') as f:
104
+ result = chardet.detect(f.read())
105
+ encoding = result['encoding']
106
+
107
+ data = pd.read_csv(file_path, encoding=encoding)
108
+ if 'Question' not in data.columns or 'Answers' not in data.columns:
109
+ raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
110
+ data = data.dropna(subset=['Question', 'Answers'])
111
+
112
+ logger.info(f"Loaded {len(data)} entries from {file_path}")
113
+ return data['Question'].tolist(), data['Answers'].tolist()
114
+ except Exception as e:
115
+ logger.error(f"Error loading CSV: {e}")
116
+ return [], []
117
+
118
+ # Path to your CSV file (ensure 'AIChatbot.csv' is in the repository)
119
+ csv_file_path = "AIChatbot.csv"
120
+ corpus_questions, corpus_answers = load_csv(csv_file_path)
121
+ if not corpus_questions:
122
+ raise ValueError("Failed to load the knowledge base.")
123
+
124
+ ###############################################################################
125
+ # 4) Sentence Embeddings & Cross-Encoder
126
+ ###############################################################################
127
+ embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
128
+ try:
129
+ embedding_model = SentenceTransformer(embedding_model_name)
130
+ logger.info(f"Loaded embedding model: {embedding_model_name}")
131
+ except Exception as e:
132
+ logger.error(f"Failed to load embedding model: {e}")
133
+ raise e
134
+
135
+ try:
136
+ question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
137
+ logger.info("Encoded question embeddings successfully.")
138
+ except Exception as e:
139
+ logger.error(f"Failed to encode question embeddings: {e}")
140
+ raise e
141
+
142
+ cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
143
+ try:
144
+ cross_encoder = CrossEncoder(cross_encoder_name)
145
+ logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
146
+ except Exception as e:
147
+ logger.error(f"Failed to load cross-encoder model: {e}")
148
+ raise e
149
+
150
+ ###############################################################################
151
+ # 5) Retrieval + Re-Ranking
152
+ ###############################################################################
153
+ class EmbeddingRetriever:
154
+ def __init__(self, questions, answers, embeddings, model, cross_encoder):
155
+ self.questions = questions
156
+ self.answers = answers
157
+ self.embeddings = embeddings
158
+ self.model = model
159
+ self.cross_encoder = cross_encoder
160
+
161
+ def retrieve(self, query: str, top_k: int = 3):
162
+ try:
163
+ query_embedding = self.model.encode(query, convert_to_tensor=True)
164
+ scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
165
+ scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]
166
+
167
+ cross_inputs = [[query, candidate[0]] for candidate in scored_data]
168
+ cross_scores = self.cross_encoder.predict(cross_inputs)
169
+
170
+ reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
171
+ final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
172
+ logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
173
+ return final_retrieved
174
+ except Exception as e:
175
+ logger.error(f"Error during retrieval: {e}")
176
+ logger.debug("Exception details:", exc_info=True)
177
+ return []
178
+
179
+ retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)
180
+
181
+ ###############################################################################
182
+ # 6) Sanity Check Tool
183
+ ###############################################################################
184
+ class QuestionSanityChecker:
185
+ def __init__(self, llm: GeminiLLM):
186
+ self.llm = llm
187
+
188
+ def is_relevant(self, question: str) -> bool:
189
+ prompt = (
190
+ f"You are an assistant that determines whether a question is relevant to daily wellness.\n\n"
191
+ f"Question: {question}\n\n"
192
+ f"Is the above question relevant to daily wellness? Respond with 'Yes' or 'No' only."
193
+ )
194
+ try:
195
+ response = self.llm._call(prompt)
196
+ is_yes = 'yes' in response.lower()
197
+ logger.debug(f"Sanity check response: {response}, interpreted as {is_yes}")
198
+ return is_yes
199
+ except Exception as e:
200
+ logger.error(f"Error in sanity check: {e}")
201
+ logger.debug("Exception details:", exc_info=True)
202
+ return False
203
+
204
+ # Instantiate the sanity checker globally
205
+ sanity_checker = QuestionSanityChecker(llm)
206
+
207
+ ###############################################################################
208
+ # 7) smolagents Integration: GROQ Model and Web Search
209
+ ###############################################################################
210
+ # Initialize the smolagents' LiteLLMModel with GROQ model
211
+ smol_model = LiteLLMModel("groq/llama3-8b-8192")
212
+
213
+ # Instantiate the DuckDuckGo search tool
214
+ search_tool = DuckDuckGoSearchTool()
215
+
216
+ # Create the web agent with the search tool
217
+ web_agent = CodeAgent(
218
+ tools=[search_tool],
219
+ model=smol_model
220
+ )
221
+
222
+ # Define the managed web agent
223
+ managed_web_agent = ManagedAgent(
224
+ agent=web_agent,
225
+ name="web_search",
226
+ description="Runs a web search for you. Provide your query as an argument."
227
+ )
228
+
229
+ # Create the manager agent with managed web agent and additional tools if needed
230
+ manager_agent = CodeAgent(
231
+ tools=[], # Add additional tools here if required
232
+ model=smol_model,
233
+ managed_agents=[managed_web_agent]
234
+ )
235
+
236
+ ###############################################################################
237
+ # 8) Answer Expansion
238
+ ###############################################################################
239
+ class AnswerExpander:
240
+ def __init__(self, llm: GeminiLLM):
241
+ self.llm = llm
242
+
243
+ def expand(self, query: str, retrieved_answers: List[str], detail: bool = False) -> str:
244
+ """
245
+ Synthesize answers into a single cohesive response.
246
+ If detail=True, provide a more detailed response.
247
+ """
248
+ try:
249
+ reference_block = "\n".join(
250
+ f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1)
251
+ )
252
+
253
+ # ADDED: More elaboration if detail=True
254
+ detail_instructions = (
255
+ "Provide a thorough, in-depth explanation, adding relevant tips and context, "
256
+ "while remaining creative and brand-aligned. "
257
+ if detail else
258
+ "Provide a concise response in no more than 4 sentences."
259
+ )
260
+
261
+ prompt = (
262
+ f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple "
263
+ f"potential answers retrieved from a local knowledge base. You have a user question.\n\n"
264
+ f"Question: {query}\n\n"
265
+ f"Retrieved Answers:\n{reference_block}\n\n"
266
+ f"Please synthesize these references into a single cohesive, creative, and brand-aligned response. "
267
+ f"{detail_instructions} "
268
+ f"End with a short inspirational note.\n\n"
269
+ "Disclaimer: This is general wellness information, not a substitute for professional medical advice."
270
+ )
271
+
272
+ logger.debug(f"Generated prompt for answer expansion: {prompt}")
273
+ response = self.llm._call(prompt)
274
+ logger.debug(f"Expanded answer: {response}")
275
+ return response.strip()
276
+ except Exception as e:
277
+ logger.error(f"Error expanding answer: {e}")
278
+ logger.debug("Exception details:", exc_info=True)
279
+ return "Sorry, an error occurred while generating a response."
280
+
281
+ answer_expander = AnswerExpander(llm)
282
+
283
+ ###############################################################################
284
+ # 9) Persistent Cache (ADDED)
285
+ ###############################################################################
286
+ CACHE_FILE = "query_cache.json"
287
+ SIMILARITY_THRESHOLD_CACHE = 0.8 # Adjust for how close a query must be to reuse cache
288
+
289
+ def load_cache() -> Dict:
290
+ """Load the cache from the local JSON file."""
291
+ if os.path.isfile(CACHE_FILE):
292
+ try:
293
+ with open(CACHE_FILE, "r", encoding="utf-8") as f:
294
+ return json.load(f)
295
+ except Exception as e:
296
+ logger.error(f"Failed to load cache file: {e}")
297
+ return {}
298
+ return {}
299
+
300
+ def save_cache(cache_data: Dict):
301
+ """Save the cache dictionary to a local JSON file."""
302
+ try:
303
+ with open(CACHE_FILE, "w", encoding="utf-8") as f:
304
+ json.dump(cache_data, f, ensure_ascii=False, indent=2)
305
+ except Exception as e:
306
+ logger.error(f"Failed to save cache file: {e}")
307
+
308
+ def compute_hash(text: str) -> str:
309
+ """Compute a simple hash for the text to handle duplicates in a consistent way."""
310
+ return hashlib.md5(text.encode("utf-8")).hexdigest()
311
+
312
+ # ADDED: Load cache at startup
313
+ cache_store = load_cache()
314
+
315
+ ###############################################################################
316
+ # 9.1) Utility to attempt cached retrieval (ADDED)
317
+ ###############################################################################
318
+ def get_cached_answer(query: str) -> Optional[str]:
319
+ """
320
+ Returns a cached answer if there's a very similar query in the cache.
321
+ We'll compare embeddings to find if a stored query is above threshold.
322
+ """
323
+ if not cache_store:
324
+ return None
325
+
326
+ # Compute embedding for the incoming query
327
+ query_embedding = embedding_model.encode(query, convert_to_tensor=True)
328
+
329
+ # Check all cached items
330
+ best_score = 0.0
331
+ best_answer = None
332
+
333
+ for cached_q, cache_data in cache_store.items():
334
+ stored_embedding = np.array(cache_data["embedding"], dtype=np.float32)
335
+ score = util.pytorch_cos_sim(query_embedding, stored_embedding)[0].item()
336
+ if score > best_score:
337
+ best_score = score
338
+ best_answer = cache_data["answer"]
339
+
340
+ if best_score >= SIMILARITY_THRESHOLD_CACHE:
341
+ logger.info(f"Cache hit! Similarity: {best_score:.2f}, returning cached answer.")
342
+ return best_answer
343
+ return None
344
+
345
+ def store_in_cache(query: str, answer: str):
346
+ """
347
+ Store a query-answer pair in the cache with the query's embedding.
348
+ """
349
+ query_embedding = embedding_model.encode(query, convert_to_tensor=True).cpu().tolist()
350
+ cache_key = compute_hash(query)
351
+ cache_store[cache_key] = {
352
+ "query": query,
353
+ "answer": answer,
354
+ "embedding": query_embedding
355
+ }
356
+ save_cache(cache_store)
357
+
358
+ ###############################################################################
359
+ # 10) Query Handling
360
+ ###############################################################################
361
  def handle_query(query: str, detail: bool = False) -> str:
362
  """
363
  Main function to process the query.
 
447
  logger.error(f"Error handling query: {e}")
448
  logger.debug("Exception details:", exc_info=True)
449
  return "An error occurred while processing your request."
450
+
451
+
452
+ ###############################################################################
453
+ # 11) Gradio Interface
454
+ ###############################################################################
455
+ def gradio_interface(query: str, detail: bool):
456
+ """
457
+ Gradio interface function that optionally takes a detail parameter for longer responses.
458
+ """
459
+ try:
460
+ response = handle_query(query, detail=detail)
461
+ formatted_response = response # Response is already formatted
462
+ return formatted_response
463
+ except Exception as e:
464
+ logger.error(f"Error in Gradio interface: {e}")
465
+ logger.debug("Exception details:", exc_info=True)
466
+ return "**An error occurred while processing your request. Please try again later.**"
467
+
468
+ # ADDED: We now have a checkbox for detail in the Gradio UI
469
+ interface = gr.Interface(
470
+ fn=gradio_interface,
471
+ inputs=[
472
+ gr.Textbox(
473
+ lines=2,
474
+ placeholder="e.g., What is box breathing?",
475
+ label="Ask Daily Wellness AI"
476
+ ),
477
+ gr.Checkbox(
478
+ label="In-Depth Answer?",
479
+ value=False,
480
+ info="Check for a longer, more detailed response."
481
+ )
482
+ ],
483
+ outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
484
+ title="Daily Wellness AI",
485
+ description="Ask wellness-related questions and receive synthesized, creative answers. Optionally request a more in-depth response.",
486
+ theme="default",
487
+ examples=[
488
+ ["What is box breathing and how does it help reduce anxiety?", True],
489
+ ["Provide a daily wellness schedule incorporating box breathing techniques.", False],
490
+ ["What are some tips for maintaining good posture while working at a desk?", True],
491
+ ["Who is the CEO of Hugging Face?", False] # Example of an out-of-context question
492
+ ],
493
+ allow_flagging="never"
494
+ )
495
+
496
+ ###############################################################################
497
+ # 12) Launch Gradio
498
+ ###############################################################################
499
+ if __name__ == "__main__":
500
+ try:
501
+ # For Hugging Face Spaces, set share=True to create a public link
502
+ interface.launch(server_name="0.0.0.0", server_port=7860, debug=False, share=True)
503
+ except Exception as e:
504
+ logger.error(f"Failed to launch Gradio interface: {e}")
505
+ logger.debug("Exception details:", exc_info=True)