ADDED FEATURES
Browse files
app.py
CHANGED
@@ -1,102 +1,149 @@
|
|
1 |
# app.py
|
2 |
|
3 |
import os
|
4 |
-
import getpass
|
5 |
import pandas as pd
|
6 |
import chardet
|
7 |
import logging
|
8 |
import gradio as gr
|
|
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
11 |
-
from
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
logger = logging.getLogger("Daily Wellness AI Guru")
|
26 |
-
|
27 |
-
# --------------------------------------------------------------------------------
|
28 |
-
# Ensure Hugging Face API Token
|
29 |
-
# --------------------------------------------------------------------------------
|
30 |
-
# In a Hugging Face Space, you can set HF_API_TOKEN as a secret variable.
|
31 |
-
# If it's not set, you could prompt for it locally, but in Spaces,
|
32 |
-
# you typically wouldn't do getpass. We'll leave the logic here as fallback.
|
33 |
-
if 'HF_API_TOKEN' not in os.environ or not os.environ['HF_API_TOKEN']:
|
34 |
-
os.environ['HF_API_TOKEN'] = getpass.getpass('Enter your Hugging Face API Token: ')
|
35 |
-
else:
|
36 |
-
print("HF_API_TOKEN is already set.")
|
37 |
-
|
38 |
-
# --------------------------------------------------------------------------------
|
39 |
-
# CSV Loading and Processing
|
40 |
-
# --------------------------------------------------------------------------------
|
41 |
-
def load_csv(file_path):
|
42 |
-
"""
|
43 |
-
Load and process a CSV file into two lists: questions and answers.
|
44 |
-
"""
|
45 |
try:
|
46 |
-
|
|
|
|
|
|
|
47 |
with open(file_path, 'rb') as f:
|
48 |
result = chardet.detect(f.read())
|
49 |
encoding = result['encoding']
|
50 |
|
51 |
-
# Load the CSV using the detected encoding
|
52 |
data = pd.read_csv(file_path, encoding=encoding)
|
53 |
-
|
54 |
-
# Validate that the required columns are present
|
55 |
if 'Question' not in data.columns or 'Answers' not in data.columns:
|
56 |
-
raise ValueError("
|
57 |
-
|
58 |
-
# Drop any rows with missing values in 'Question' or 'Answers'
|
59 |
data = data.dropna(subset=['Question', 'Answers'])
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
answers = data['Answers'].tolist()
|
64 |
-
|
65 |
-
logger.info(f"Loaded {len(questions)} questions and {len(answers)} answers from {file_path}")
|
66 |
-
return questions, answers
|
67 |
except Exception as e:
|
68 |
-
logger.error(f"Error loading CSV
|
69 |
return [], []
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
file_path = "AIChatbot.csv" # Ensure this file is in the same directory as app.py
|
75 |
-
corpus_questions, corpus_answers = load_csv(file_path)
|
76 |
-
|
77 |
if not corpus_questions:
|
78 |
-
raise ValueError(
|
79 |
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
logger.
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
class EmbeddingRetriever:
|
101 |
def __init__(self, questions, answers, embeddings, model, cross_encoder):
|
102 |
self.questions = questions
|
@@ -105,204 +152,121 @@ class EmbeddingRetriever:
|
|
105 |
self.model = model
|
106 |
self.cross_encoder = cross_encoder
|
107 |
|
108 |
-
def retrieve(self, query, top_k=3):
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
# Combine data
|
114 |
-
scored_data = list(zip(self.questions, self.answers, scores))
|
115 |
-
# Sort by best scores
|
116 |
-
scored_data = sorted(scored_data, key=lambda x: x[2], reverse=True)
|
117 |
-
# Take top_k
|
118 |
-
top_candidates = scored_data[:top_k]
|
119 |
-
|
120 |
-
# Cross-encode re-rank
|
121 |
-
cross_inputs = [[query, candidate[0]] for candidate in top_candidates]
|
122 |
-
cross_scores = self.cross_encoder.predict(cross_inputs)
|
123 |
-
|
124 |
-
reranked = sorted(
|
125 |
-
zip(top_candidates, cross_scores),
|
126 |
-
key=lambda x: x[1],
|
127 |
-
reverse=True
|
128 |
-
)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
class AnswerExpander:
|
147 |
-
def __init__(self,
|
148 |
-
self.
|
149 |
|
150 |
-
def expand(self,
|
151 |
-
"""
|
152 |
-
Prompt the LLM to provide a more creative, brand-aligned answer.
|
153 |
-
"""
|
154 |
-
prompt = (
|
155 |
-
"You are Daily Wellness AI, a friendly and creative wellness expert. "
|
156 |
-
"The user has a question about well-being. Provide an encouraging, day-to-day "
|
157 |
-
"wellness perspective. Be gentle, uplifting, and brand-aligned.\n\n"
|
158 |
-
f"Question: {question}\n"
|
159 |
-
f"Current short answer: {short_answer}\n\n"
|
160 |
-
"Please rephrase and expand with more detail, wellness tips, daily-life "
|
161 |
-
"applications, and an optimistic tone. Keep it informal, friendly, and end "
|
162 |
-
"with a short inspirational note.\n"
|
163 |
-
)
|
164 |
try:
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
except Exception as e:
|
168 |
-
logger.error(f"
|
169 |
-
|
170 |
-
|
171 |
-
# NOTE: We are using a basic HfApiModel here (no custom sampling).
|
172 |
-
expander_model = HfApiModel()
|
173 |
-
answer_expander = AnswerExpander(expander_model)
|
174 |
-
|
175 |
-
# --------------------------------------------------------------------------------
|
176 |
-
# Enhanced Retriever Tool
|
177 |
-
# --------------------------------------------------------------------------------
|
178 |
-
from smolagents import Tool
|
179 |
-
|
180 |
-
class RetrieverTool(Tool):
|
181 |
-
name = "retriever_tool"
|
182 |
-
description = "Uses semantic search + cross-encoder re-ranking to retrieve the best answer."
|
183 |
-
inputs = {
|
184 |
-
"query": {
|
185 |
-
"type": "string",
|
186 |
-
"description": "User query for retrieving relevant information.",
|
187 |
-
}
|
188 |
-
}
|
189 |
-
output_type = "string"
|
190 |
-
|
191 |
-
def __init__(self, retriever, expander):
|
192 |
-
super().__init__()
|
193 |
-
self.retriever = retriever
|
194 |
-
self.expander = expander
|
195 |
-
|
196 |
-
def forward(self, query):
|
197 |
-
best_answer = self.retriever.retrieve(query, top_k=3)
|
198 |
-
if best_answer:
|
199 |
-
# If short, expand it
|
200 |
-
if len(best_answer.strip()) < 80:
|
201 |
-
logger.info("Answer is short. Expanding with LLM.")
|
202 |
-
best_answer = self.expander.expand(query, best_answer)
|
203 |
-
return best_answer
|
204 |
-
return "No relevant information found."
|
205 |
-
|
206 |
-
retriever_tool = RetrieverTool(retriever, answer_expander)
|
207 |
-
|
208 |
-
# --------------------------------------------------------------------------------
|
209 |
-
# DuckDuckGo (Web) Fallback
|
210 |
-
# --------------------------------------------------------------------------------
|
211 |
-
search_tool = DuckDuckGoSearchTool()
|
212 |
-
|
213 |
-
# --------------------------------------------------------------------------------
|
214 |
-
# Managed Agents
|
215 |
-
# --------------------------------------------------------------------------------
|
216 |
-
from smolagents import ManagedAgent, CodeAgent, LiteLLMModel
|
217 |
-
|
218 |
-
retriever_agent = ManagedAgent(
|
219 |
-
agent=CodeAgent(tools=[retriever_tool], model=LiteLLMModel("groq/llama3-8b-8192")),
|
220 |
-
name="retriever_agent",
|
221 |
-
description="Retrieves answers from the local knowledge base (CSV file)."
|
222 |
-
)
|
223 |
|
224 |
-
|
225 |
-
agent=CodeAgent(tools=[search_tool], model=HfApiModel()),
|
226 |
-
name="web_search_agent",
|
227 |
-
description="Performs web searches if the local knowledge base doesn't have an answer."
|
228 |
-
)
|
229 |
|
230 |
-
|
231 |
-
#
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
managed_agents=[retriever_agent, web_agent],
|
237 |
-
verbose=True
|
238 |
-
)
|
239 |
|
240 |
-
# --------------------------------------------------------------------------------
|
241 |
-
# Gradio Interface
|
242 |
-
# --------------------------------------------------------------------------------
|
243 |
-
def gradio_interface(query):
|
244 |
try:
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
"not a substitute for professional medical advice.\n\n"
|
269 |
-
"Wishing you a calm and wonderful day!"
|
270 |
-
)
|
271 |
-
|
272 |
-
# 3) Default fallback
|
273 |
-
logger.info("No response found from any source.")
|
274 |
-
return (
|
275 |
-
"Hello! This is **Daily Wellness AI**.\n\n"
|
276 |
-
"I'm sorry, I couldn't find an answer to your question. "
|
277 |
-
"Please try rephrasing or ask something else.\n\n"
|
278 |
-
"Take care, and have a wonderful day!"
|
279 |
)
|
|
|
280 |
except Exception as e:
|
281 |
-
logger.error(f"Error
|
|
|
282 |
return "**An error occurred while processing your request. Please try again later.**"
|
283 |
|
284 |
-
# --------------------------------------------------------------------------------
|
285 |
-
# Launch Gradio App
|
286 |
-
# --------------------------------------------------------------------------------
|
287 |
interface = gr.Interface(
|
288 |
fn=gradio_interface,
|
289 |
inputs=gr.Textbox(
|
290 |
-
|
291 |
-
placeholder="e.g., What is box breathing?"
|
|
|
292 |
),
|
293 |
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
|
294 |
-
title="Daily Wellness AI
|
295 |
-
description=
|
296 |
-
|
297 |
-
|
298 |
-
"
|
299 |
-
|
300 |
-
|
|
|
|
|
301 |
)
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
# If running in a local environment, we can also just call main()
|
307 |
if __name__ == "__main__":
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
|
3 |
import os
|
|
|
4 |
import pandas as pd
|
5 |
import chardet
|
6 |
import logging
|
7 |
import gradio as gr
|
8 |
+
from typing import Optional, List, Tuple, ClassVar, Dict
|
9 |
|
10 |
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
11 |
+
from langchain.llms.base import LLM
|
12 |
+
import google.generativeai as genai
|
13 |
+
|
14 |
+
###############################################################################
|
15 |
+
# 1) Logging Setup
|
16 |
+
###############################################################################
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger("Daily Wellness AI")
|
19 |
+
|
20 |
+
###############################################################################
|
21 |
+
# 2) API Key Handling and Enhanced GeminiLLM Class
|
22 |
+
###############################################################################
|
23 |
+
def clean_api_key(key: str) -> str:
|
24 |
+
"""Remove non-ASCII characters and strip whitespace from the API key."""
|
25 |
+
return ''.join(c for c in key if ord(c) < 128).strip()
|
26 |
+
|
27 |
+
# Load the GEMINI API key from environment variables
|
28 |
+
gemini_api_key = os.environ.get("GEMINI_API_KEY")
|
29 |
+
|
30 |
+
if not gemini_api_key:
|
31 |
+
logger.error("GEMINI_API_KEY environment variable not set.")
|
32 |
+
raise EnvironmentError("Please set the GEMINI_API_KEY environment variable.")
|
33 |
+
|
34 |
+
gemini_api_key = clean_api_key(gemini_api_key)
|
35 |
+
logger.info("GEMINI API Key loaded successfully.")
|
36 |
+
|
37 |
+
# Configure Google Generative AI
|
38 |
+
try:
|
39 |
+
genai.configure(api_key=gemini_api_key)
|
40 |
+
logger.info("Configured Google Generative AI with provided API key.")
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Failed to configure Google Generative AI: {e}")
|
43 |
+
raise e
|
44 |
+
|
45 |
+
class GeminiLLM(LLM):
|
46 |
+
model_name: ClassVar[str] = "gemini-2.0-flash-exp"
|
47 |
+
temperature: float = 0.7
|
48 |
+
top_p: float = 0.95
|
49 |
+
top_k: int = 40
|
50 |
+
max_tokens: int = 2048
|
51 |
+
|
52 |
+
@property
|
53 |
+
def _llm_type(self) -> str:
|
54 |
+
return "custom_gemini"
|
55 |
+
|
56 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
57 |
+
generation_config = {
|
58 |
+
"temperature": self.temperature,
|
59 |
+
"top_p": self.top_p,
|
60 |
+
"top_k": self.top_k,
|
61 |
+
"max_output_tokens": self.max_tokens,
|
62 |
+
}
|
63 |
+
|
64 |
+
try:
|
65 |
+
logger.debug(f"Initializing GenerativeModel with config: {generation_config}")
|
66 |
+
model = genai.GenerativeModel(
|
67 |
+
model_name=self.model_name,
|
68 |
+
generation_config=generation_config,
|
69 |
+
)
|
70 |
+
logger.debug("GenerativeModel initialized successfully.")
|
71 |
+
|
72 |
+
chat_session = model.start_chat(history=[])
|
73 |
+
logger.debug("Chat session started.")
|
74 |
+
|
75 |
+
response = chat_session.send_message(prompt)
|
76 |
+
logger.debug(f"Prompt sent to model: {prompt}")
|
77 |
+
logger.debug(f"Raw response received: {response.text}")
|
78 |
+
|
79 |
+
return response.text
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Error generating response with GeminiLLM: {e}")
|
82 |
+
logger.debug("Exception details:", exc_info=True)
|
83 |
+
raise e
|
84 |
+
|
85 |
+
# Instantiate the GeminiLLM globally
|
86 |
+
llm = GeminiLLM()
|
87 |
|
88 |
+
###############################################################################
|
89 |
+
# 3) CSV Loading and Processing
|
90 |
+
###############################################################################
|
91 |
+
def load_csv(file_path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
try:
|
93 |
+
if not os.path.isfile(file_path):
|
94 |
+
logger.error(f"CSV file does not exist: {file_path}")
|
95 |
+
return [], []
|
96 |
+
|
97 |
with open(file_path, 'rb') as f:
|
98 |
result = chardet.detect(f.read())
|
99 |
encoding = result['encoding']
|
100 |
|
|
|
101 |
data = pd.read_csv(file_path, encoding=encoding)
|
|
|
|
|
102 |
if 'Question' not in data.columns or 'Answers' not in data.columns:
|
103 |
+
raise ValueError("CSV must contain 'Question' and 'Answers' columns.")
|
|
|
|
|
104 |
data = data.dropna(subset=['Question', 'Answers'])
|
105 |
|
106 |
+
logger.info(f"Loaded {len(data)} entries from {file_path}")
|
107 |
+
return data['Question'].tolist(), data['Answers'].tolist()
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
+
logger.error(f"Error loading CSV: {e}")
|
110 |
return [], []
|
111 |
|
112 |
+
# Path to your CSV file (ensure 'AIChatbot.csv' is in the repository)
|
113 |
+
csv_file_path = "AIChatbot.csv"
|
114 |
+
corpus_questions, corpus_answers = load_csv(csv_file_path)
|
|
|
|
|
|
|
115 |
if not corpus_questions:
|
116 |
+
raise ValueError("Failed to load the knowledge base.")
|
117 |
|
118 |
+
###############################################################################
|
119 |
+
# 4) Sentence Embeddings & Cross-Encoder
|
120 |
+
###############################################################################
|
121 |
embedding_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
122 |
+
try:
|
123 |
+
embedding_model = SentenceTransformer(embedding_model_name)
|
124 |
+
logger.info(f"Loaded embedding model: {embedding_model_name}")
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Failed to load embedding model: {e}")
|
127 |
+
raise e
|
128 |
+
|
129 |
+
try:
|
130 |
+
question_embeddings = embedding_model.encode(corpus_questions, convert_to_tensor=True)
|
131 |
+
logger.info("Encoded question embeddings successfully.")
|
132 |
+
except Exception as e:
|
133 |
+
logger.error(f"Failed to encode question embeddings: {e}")
|
134 |
+
raise e
|
135 |
+
|
136 |
+
cross_encoder_name = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
137 |
+
try:
|
138 |
+
cross_encoder = CrossEncoder(cross_encoder_name)
|
139 |
+
logger.info(f"Loaded cross-encoder model: {cross_encoder_name}")
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Failed to load cross-encoder model: {e}")
|
142 |
+
raise e
|
143 |
+
|
144 |
+
###############################################################################
|
145 |
+
# 5) Retrieval + Re-Ranking
|
146 |
+
###############################################################################
|
147 |
class EmbeddingRetriever:
|
148 |
def __init__(self, questions, answers, embeddings, model, cross_encoder):
|
149 |
self.questions = questions
|
|
|
152 |
self.model = model
|
153 |
self.cross_encoder = cross_encoder
|
154 |
|
155 |
+
def retrieve(self, query: str, top_k: int = 3):
|
156 |
+
try:
|
157 |
+
query_embedding = self.model.encode(query, convert_to_tensor=True)
|
158 |
+
scores = util.pytorch_cos_sim(query_embedding, self.embeddings)[0].cpu().tolist()
|
159 |
+
scored_data = sorted(zip(self.questions, self.answers, scores), key=lambda x: x[2], reverse=True)[:top_k]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
cross_inputs = [[query, candidate[0]] for candidate in scored_data]
|
162 |
+
cross_scores = self.cross_encoder.predict(cross_inputs)
|
163 |
+
|
164 |
+
reranked = sorted(zip(scored_data, cross_scores), key=lambda x: x[1], reverse=True)
|
165 |
+
final_retrieved = [(entry[0][1], entry[1]) for entry in reranked]
|
166 |
+
logger.debug(f"Retrieved and reranked answers: {final_retrieved}")
|
167 |
+
return final_retrieved
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(f"Error during retrieval: {e}")
|
170 |
+
logger.debug("Exception details:", exc_info=True)
|
171 |
+
return []
|
|
|
172 |
|
173 |
+
retriever = EmbeddingRetriever(corpus_questions, corpus_answers, question_embeddings, embedding_model, cross_encoder)
|
174 |
+
|
175 |
+
###############################################################################
|
176 |
+
# 6) Answer Expansion
|
177 |
+
###############################################################################
|
178 |
class AnswerExpander:
|
179 |
+
def __init__(self, llm: GeminiLLM):
|
180 |
+
self.llm = llm
|
181 |
|
182 |
+
def expand(self, query: str, retrieved_answers: List[str]) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
try:
|
184 |
+
reference_block = "\n".join(f"- {idx+1}) {ans}" for idx, ans in enumerate(retrieved_answers, start=1))
|
185 |
+
prompt = (
|
186 |
+
f"You are Daily Wellness AI, a friendly wellness expert. Below are multiple "
|
187 |
+
f"potential answers retrieved from a local knowledge base. You have a user question.\n\n"
|
188 |
+
f"Question: {query}\n\n"
|
189 |
+
f"Retrieved Answers:\n{reference_block}\n\n"
|
190 |
+
"Please synthesize these references into a single cohesive, creative, "
|
191 |
+
"and brand-aligned response. Add practical tips and positivity, and end "
|
192 |
+
"with a short inspirational note.\n\n"
|
193 |
+
"Disclaimer: This is general wellness information, not a substitute for professional medical advice."
|
194 |
+
)
|
195 |
+
logger.debug(f"Generated prompt for answer expansion: {prompt}")
|
196 |
+
response = self.llm._call(prompt)
|
197 |
+
logger.debug(f"Expanded answer: {response}")
|
198 |
+
return response.strip()
|
199 |
except Exception as e:
|
200 |
+
logger.error(f"Error expanding answer: {e}")
|
201 |
+
logger.debug("Exception details:", exc_info=True)
|
202 |
+
return "Sorry, an error occurred while generating a response."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
answer_expander = AnswerExpander(llm)
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
###############################################################################
|
207 |
+
# 7) Query Handling
|
208 |
+
###############################################################################
|
209 |
+
def handle_query(query: str) -> str:
|
210 |
+
if not query or not isinstance(query, str) or len(query.strip()) == 0:
|
211 |
+
return "Please provide a valid question."
|
|
|
|
|
|
|
212 |
|
|
|
|
|
|
|
|
|
213 |
try:
|
214 |
+
retrieved = retriever.retrieve(query)
|
215 |
+
if not retrieved:
|
216 |
+
return "I'm sorry, I couldn't find an answer to your question."
|
217 |
+
responses = [ans[0] for ans in retrieved]
|
218 |
+
expanded_answer = answer_expander.expand(query, responses)
|
219 |
+
return expanded_answer
|
220 |
+
except Exception as e:
|
221 |
+
logger.error(f"Error handling query: {e}")
|
222 |
+
logger.debug("Exception details:", exc_info=True)
|
223 |
+
return "An error occurred while processing your request."
|
224 |
+
|
225 |
+
###############################################################################
|
226 |
+
# 8) Gradio Interface
|
227 |
+
###############################################################################
|
228 |
+
def gradio_interface(query: str):
|
229 |
+
try:
|
230 |
+
response = handle_query(query)
|
231 |
+
formatted_response = (
|
232 |
+
f"**Daily Wellness AI**\n\n"
|
233 |
+
f"{response}\n\n"
|
234 |
+
"Disclaimer: This is general wellness information, "
|
235 |
+
"not a substitute for professional medical advice.\n\n"
|
236 |
+
"Wishing you a calm and wonderful day!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
)
|
238 |
+
return formatted_response
|
239 |
except Exception as e:
|
240 |
+
logger.error(f"Error in Gradio interface: {e}")
|
241 |
+
logger.debug("Exception details:", exc_info=True)
|
242 |
return "**An error occurred while processing your request. Please try again later.**"
|
243 |
|
|
|
|
|
|
|
244 |
interface = gr.Interface(
|
245 |
fn=gradio_interface,
|
246 |
inputs=gr.Textbox(
|
247 |
+
lines=2,
|
248 |
+
placeholder="e.g., What is box breathing?",
|
249 |
+
label="Ask Daily Wellness AI"
|
250 |
),
|
251 |
outputs=gr.Markdown(label="Answer from Daily Wellness AI"),
|
252 |
+
title="Daily Wellness AI",
|
253 |
+
description="Ask wellness-related questions and receive synthesized, creative answers.",
|
254 |
+
theme="default",
|
255 |
+
examples=[
|
256 |
+
"What is box breathing and how does it help reduce anxiety?",
|
257 |
+
"Provide a daily wellness schedule incorporating box breathing techniques.",
|
258 |
+
"What are some tips for maintaining good posture while working at a desk?"
|
259 |
+
],
|
260 |
+
allow_flagging="never"
|
261 |
)
|
262 |
|
263 |
+
###############################################################################
|
264 |
+
# 9) Launch Gradio
|
265 |
+
###############################################################################
|
|
|
266 |
if __name__ == "__main__":
|
267 |
+
try:
|
268 |
+
# For Hugging Face Spaces, set share=False
|
269 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, debug=False)
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"Failed to launch Gradio interface: {e}")
|
272 |
+
logger.debug("Exception details:", exc_info=True)
|