sshi
Add application file
c37ceb0
raw
history blame
5.67 kB
import gradio as gr
import os
import torch
import pytorch_lightning as pl
# torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
# torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
# torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
# os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth")
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
from PIL import Image
import matplotlib.pyplot as plt
class Detr(pl.LightningModule):
def __init__(self, lr, weight_decay):
super().__init__()
# replace COCO classification head with custom head
self.model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small",
num_labels=len(id2label),
ignore_mismatched_sizes=True)
# see https://github.com/PyTorchLightning/pytorch-lightning/pull/1896
self.lr = lr
self.weight_decay = weight_decay
def forward(self, pixel_values):
outputs = self.model(pixel_values=pixel_values)
return outputs
def common_step(self, batch, batch_idx):
pixel_values = batch["pixel_values"]
labels = [{k: v.to(self.device) for k, v in t.items()} for t in batch["labels"]]
outputs = self.model(pixel_values=pixel_values, labels=labels)
loss = outputs.loss
loss_dict = outputs.loss_dict
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.common_step(batch, batch_idx)
# logs metrics for each training_step,
# and the average across the epoch
self.log("training_loss", loss)
for k,v in loss_dict.items():
self.log("train_" + k, v.item())
return loss
def validation_step(self, batch, batch_idx):
loss, loss_dict = self.common_step(batch, batch_idx)
self.log("validation_loss", loss)
for k,v in loss_dict.items():
self.log("validation_" + k, v.item())
return loss
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr,
weight_decay=self.weight_decay)
return optimizer
device = "cuda" if torch.cuda.is_available() else "cpu"
feature_extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-small", size=512, max_size=864)
# Build model and load checkpoint
checkpoint = 'fintune_traffic_object.ckpt'
model = Detr.load_from_checkpoint(checkpoint, lr=2.5e-5, weight_decay=1e-4)
model.to(device)
model.eval()
# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.756, 0.794, 0.100], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.184, 0.494, 0.741], [0.494, 0.674, 0.556], [0.494, 0.301, 0.933],
[0.000, 0.325, 0.850], [0.745, 0.301, 0.188]]
id2label = {1: 'person', 2: 'rider', 3: 'car', 4: 'bus', 5: 'truck', 6: 'bike', 7: 'motor', 8: 'traffic light', 9: 'traffic sign', 10: 'train'}
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def plot_results(pil_img, prob, boxes):
fig = plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
cl = p.argmax()
c = colors[cl]
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=2))
text = f'{id2label[cl.item()]}: {p[cl]:0.2f}'
ax.text(xmin, ymin, text, fontsize=10,
bbox=dict(facecolor=c, alpha=0.5))
plt.axis('off')
return Image.frombytes('RGB', fig.canvas.get_width_height(),fig.canvas.tostring_rgb())
def generate_preds(processor, model, image):
inputs = processor(images=image, return_tensors="pt").to(device)
pixel_values = inputs.pixel_values.unsqueeze(0)
preds = model(pixel_values=pixel_values)
return preds
def visualize_preds(image, preds, threshold=0.9):
# keep only predictions with confidence >= threshold
probas = preds.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > threshold
# convert predicted boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(preds.pred_boxes[0, keep].cpu(), image.size)
return plot_results(image, probas[keep], bboxes_scaled)
def detect(img, model):
# Run inference
preds = generate_preds(feature_extractor, model, img)
return visualize_preds(img, preds)
interface = gr.Interface(
fn=detect,
inputs=[gr.Image(type="pil")],
outputs=gr.Image(type="pil"),
# examples=[["example1.jpeg"], ["example2.jpeg"], ["example3.jpeg"]],
title="YOLOS for traffic object detection",
description="A downstream application for <a href='https://huggingface.co/docs/transformers/model_doc/yolos' style='text-decoration: underline' target='_blank'>YOLOS</a> application on traffic object detection. ")
interface.launch()