File size: 1,881 Bytes
c287584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr

import nltk
import random
import numpy as np
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = summary_model.to(device)


nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize

def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

set_seed(42)

def postprocesstext (content):
  final=""
  for sent in sent_tokenize(content):
    sent = sent.capitalize()
    final = final +" "+sent
  return final

def summarizer(text,model,tokenizer):
  text = text.strip().replace("\n"," ")
  text = "summarize: "+text
  # print (text)
  max_len = 512
  encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)

  input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]

  outs = model.generate(input_ids=input_ids,
                                  attention_mask=attention_mask,
                                  early_stopping=True,
                                  num_beams=3,
                                  num_return_sequences=1,
                                  no_repeat_ngram_size=2,
                                  min_length = 75,
                                  max_length=300)


  dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
  summary = dec[0]
  summary = postprocesstext(summary)
  summary= summary.strip()

  return summary

demo = gr.Interface(fn=summarizer, inputs="text", outputs="text")
demo.launch()