File size: 21,707 Bytes
cbf16d4 7037bb1 cbf16d4 d6f2992 cbf16d4 f519aed 7037bb1 cbf16d4 7037bb1 cbf16d4 f519aed cbf16d4 f519aed cbf16d4 f519aed cbf16d4 62421f1 7037bb1 62421f1 cbf16d4 62421f1 7037bb1 62421f1 7037bb1 62421f1 060f00c 62421f1 ab35989 62421f1 ab35989 62421f1 060f00c 62421f1 cbf16d4 62421f1 cbf16d4 62421f1 cbf16d4 1714911 7037bb1 62421f1 cbf16d4 62421f1 cbf16d4 62421f1 cbf16d4 62421f1 cbf16d4 f1de868 55b6c4d 62421f1 cbf16d4 62421f1 ab35989 62421f1 7037bb1 f1de868 7037bb1 62421f1 cbf16d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import gradio as gr
import pixeltable as pxt
from pixeltable.functions.mistralai import chat_completions
from datetime import datetime
from textblob import TextBlob
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import os
import getpass
# Ensure necessary NLTK data is downloaded
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Set up Mistral API key
if 'MISTRAL_API_KEY' not in os.environ:
os.environ['MISTRAL_API_KEY'] = getpass.getpass('Mistral AI API Key:')
# Define UDFs
@pxt.udf
def get_sentiment_score(text: str) -> float:
return TextBlob(text).sentiment.polarity
@pxt.udf
def extract_keywords(text: str, num_keywords: int = 5) -> list:
stop_words = set(stopwords.words('english'))
words = word_tokenize(text.lower())
keywords = [word for word in words if word.isalnum() and word not in stop_words]
return sorted(set(keywords), key=keywords.count, reverse=True)[:num_keywords]
@pxt.udf
def calculate_readability(text: str) -> float:
words = len(re.findall(r'\w+', text))
sentences = len(re.findall(r'\w+[.!?]', text)) or 1
average_words_per_sentence = words / sentences
return 206.835 - 1.015 * average_words_per_sentence
# Function to run inference and analysis
def run_inference_and_analysis(task, system_prompt, input_text, temperature, top_p, max_tokens, stop, random_seed, safe_prompt):
# Initialize Pixeltable
pxt.drop_table('mistral_prompts', ignore_errors=True)
t = pxt.create_table('mistral_prompts', {
'task': pxt.String,
'system': pxt.String,
'input_text': pxt.String,
'timestamp': pxt.Timestamp,
'temperature': pxt.Float,
'top_p': pxt.Float,
'max_tokens': pxt.Int,
'stop': pxt.String,
'random_seed': pxt.Int,
'safe_prompt': pxt.Bool
})
# Insert new row into Pixeltable
t.insert([{
'task': task,
'system': system_prompt,
'input_text': input_text,
'timestamp': datetime.now(),
'temperature': temperature,
'top_p': top_p,
'max_tokens': max_tokens,
'stop': stop,
'random_seed': random_seed,
'safe_prompt': safe_prompt
}])
# Define messages for chat completion
msgs = [
{'role': 'system', 'content': t.system},
{'role': 'user', 'content': t.input_text}
]
common_params = {
'messages': msgs,
'temperature': temperature,
'top_p': top_p,
'max_tokens': max_tokens if max_tokens is not None else 300,
'stop': stop.split(',') if stop else None,
'random_seed': random_seed,
'safe_prompt': safe_prompt
}
# Add computed columns for model responses and analysis
t.add_computed_column(open_mistral_nemo=chat_completions(model='open-mistral-nemo', **common_params))
t.add_computed_column(mistral_medium=chat_completions(model='mistral-medium', **common_params))
# Extract responses
t.add_computed_column(omn_response=t.open_mistral_nemo.choices[0].message.content.astype(pxt.String))
t.add_computed_column(ml_response=t.mistral_medium.choices[0].message.content.astype(pxt.String))
# Add computed columns for analysis
t.add_computed_column(large_sentiment_score=get_sentiment_score(t.ml_response))
t.add_computed_column(large_keywords=extract_keywords(t.ml_response))
t.add_computed_column(large_readability_score=calculate_readability(t.ml_response))
t.add_computed_column(open_sentiment_score=get_sentiment_score(t.omn_response))
t.add_computed_column(open_keywords=extract_keywords(t.omn_response))
t.add_computed_column(open_readability_score=calculate_readability(t.omn_response))
# Retrieve results
results = t.select(
t.omn_response, t.ml_response,
t.large_sentiment_score, t.open_sentiment_score,
t.large_keywords, t.open_keywords,
t.large_readability_score, t.open_readability_score
).tail(1)
history = t.select(t.timestamp, t.task, t.system, t.input_text).order_by(t.timestamp, asc=False).collect().to_pandas()
responses = t.select(t.timestamp, t.omn_response, t.ml_response).order_by(t.timestamp, asc=False).collect().to_pandas()
analysis = t.select(
t.timestamp,
t.open_sentiment_score,
t.large_sentiment_score,
t.open_keywords,
t.large_keywords,
t.open_readability_score,
t.large_readability_score
).order_by(t.timestamp, asc=False).collect().to_pandas()
params = t.select(
t.timestamp,
t.temperature,
t.top_p,
t.max_tokens,
t.stop,
t.random_seed,
t.safe_prompt
).order_by(t.timestamp, asc=False).collect().to_pandas()
return (
results['omn_response'][0],
results['ml_response'][0],
results['large_sentiment_score'][0],
results['open_sentiment_score'][0],
results['large_keywords'][0],
results['open_keywords'][0],
results['large_readability_score'][0],
results['open_readability_score'][0],
history,
responses,
analysis,
params
)
def gradio_interface():
with gr.Blocks(theme=gr.themes.Base(), title="Pixeltable LLM Studio") as demo:
# Enhanced Header with Branding
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(to right, #4F46E5, #7C3AED);" class="shadow-lg">
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png"
alt="Pixeltable" style="max-width: 200px; margin-bottom: 15px;" />
<h1 style="color: white; font-size: 2.5rem; margin-bottom: 10px;">LLM Studio</h1>
<p style="color: #E5E7EB; font-size: 1.1rem;">
Powered by Pixeltable's Unified AI Data Infrastructure
</p>
</div>
""")
# Product Overview Cards
with gr.Row():
with gr.Column():
gr.HTML("""
<div style="padding: 20px; background-color: white; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); margin: 10px;">
<h3 style="color: #4F46E5; margin-bottom: 10px;">π Why Pixeltable?</h3>
<ul style="list-style-type: none; padding-left: 0;">
<li style="margin-bottom: 8px;">β¨ Unified data management for AI workflows</li>
<li style="margin-bottom: 8px;">π Automatic versioning and lineage tracking</li>
<li style="margin-bottom: 8px;">β‘ Seamless model integration and deployment</li>
<li style="margin-bottom: 8px;">π Advanced querying and analysis capabilities</li>
</ul>
</div>
""")
with gr.Column():
gr.HTML("""
<div style="padding: 20px; background-color: white; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); margin: 10px;">
<h3 style="color: #4F46E5; margin-bottom: 10px;">π‘ Features</h3>
<ul style="list-style-type: none; padding-left: 0;">
<li style="margin-bottom: 8px;">π Compare multiple LLM models side-by-side</li>
<li style="margin-bottom: 8px;">π Track and analyze model performance</li>
<li style="margin-bottom: 8px;">π― Experiment with different prompts and parameters</li>
<li style="margin-bottom: 8px;">π Automatic analysis with sentiment and readability scores</li>
</ul>
</div>
""")
# Main Interface
with gr.Tabs() as tabs:
with gr.TabItem("π― Experiment", id=0):
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="padding: 15px; background-color: #F3F4F6; border-radius: 8px; margin-bottom: 15px;">
<h3 style="color: #4F46E5; margin-bottom: 10px;">Experiment Setup</h3>
<p style="color: #6B7280; font-size: 0.9rem;">Configure your prompt engineering experiment below</p>
</div>
""")
# Define output components first
omn_response = gr.Textbox(
label="Open-Mistral-Nemo Response",
elem_classes="output-style"
)
ml_response = gr.Textbox(
label="Mistral-Medium Response",
elem_classes="output-style"
)
large_sentiment = gr.Number(label="Mistral-Medium Sentiment")
open_sentiment = gr.Number(label="Open-Mistral-Nemo Sentiment")
large_keywords = gr.Textbox(label="Mistral-Medium Keywords")
open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords")
large_readability = gr.Number(label="Mistral-Medium Readability")
open_readability = gr.Number(label="Open-Mistral-Nemo Readability")
# Now define input components
task = gr.Textbox(
label="Task Category",
placeholder="e.g., Sentiment Analysis, Text Generation, Summarization",
elem_classes="input-style"
)
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Define the AI's role and task...",
lines=3,
elem_classes="input-style"
)
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter your prompt or text to analyze...",
lines=4,
elem_classes="input-style"
)
with gr.Accordion("π οΈ Advanced Settings", open=False):
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="Top P")
max_tokens = gr.Number(label="Max Tokens", value=300)
min_tokens = gr.Number(label="Min Tokens", value=None)
stop = gr.Textbox(label="Stop Sequences (comma-separated)")
random_seed = gr.Number(label="Random Seed", value=None)
safe_prompt = gr.Checkbox(label="Safe Prompt", value=False)
# Add Examples Section with enhanced styling
gr.HTML("""
<div style="padding: 15px; background-color: #F3F4F6; border-radius: 8px; margin: 20px 0;">
<h3 style="color: #4F46E5; margin-bottom: 10px;">π Example Prompts</h3>
<p style="color: #6B7280; font-size: 0.9rem;">Try these pre-configured examples to get started</p>
</div>
""")
examples = [
# Example 1: Sentiment Analysis
["Sentiment Analysis",
"You are an AI trained to analyze the sentiment of text. Provide a detailed analysis of the emotional tone, highlighting key phrases that indicate sentiment.",
"The new restaurant downtown exceeded all my expectations. The food was exquisite, the service impeccable, and the ambiance was perfect for a romantic evening. I can't wait to go back!",
0.3, 0.95, 200, None, "", None, False],
# Example 2: Creative Writing
["Story Generation",
"You are a creative writer. Generate a short, engaging story based on the given prompt. Include vivid descriptions and an unexpected twist.",
"In a world where dreams are shared, a young girl discovers she can manipulate other people's dreams.",
0.9, 0.8, 500, 300, "The end", None, False]
]
gr.Examples(
examples=examples,
inputs=[
task, system_prompt, input_text,
temperature, top_p, max_tokens,
min_tokens, stop, random_seed,
safe_prompt
],
outputs=[
omn_response, ml_response,
large_sentiment, open_sentiment,
large_keywords, open_keywords,
large_readability, open_readability
],
fn=run_inference_and_analysis,
cache_examples=True,
elem_classes="examples-style"
)
submit_btn = gr.Button(
"π Run Analysis",
variant="primary",
scale=1,
min_width=200
)
with gr.Column(scale=1):
gr.HTML("""
<div style="padding: 15px; background-color: #F3F4F6; border-radius: 8px; margin-bottom: 15px;">
<h3 style="color: #4F46E5; margin-bottom: 10px;">Results</h3>
<p style="color: #6B7280; font-size: 0.9rem;">Compare model outputs and analysis metrics</p>
</div>
""")
with gr.Group():
omn_response = gr.Textbox(
label="Open-Mistral-Nemo Response",
elem_classes="output-style"
)
ml_response = gr.Textbox(
label="Mistral-Medium Response",
elem_classes="output-style"
)
with gr.Group():
with gr.Row():
with gr.Column():
gr.HTML("<h4>π Sentiment Analysis</h4>")
large_sentiment = gr.Number(label="Mistral-Medium")
open_sentiment = gr.Number(label="Open-Mistral-Nemo")
with gr.Column():
gr.HTML("<h4>π Readability Scores</h4>")
large_readability = gr.Number(label="Mistral-Medium")
open_readability = gr.Number(label="Open-Mistral-Nemo")
gr.HTML("<h4>π Key Terms</h4>")
with gr.Row():
large_keywords = gr.Textbox(label="Mistral-Medium Keywords")
open_keywords = gr.Textbox(label="Open-Mistral-Nemo Keywords")
with gr.TabItem("π History & Analysis", id=1):
with gr.Tabs():
with gr.TabItem("Prompt History"):
history = gr.DataFrame(
headers=["Timestamp", "Task", "System Prompt", "Input Text"],
wrap=True,
elem_classes="table-style"
)
with gr.TabItem("Model Responses"):
responses = gr.DataFrame(
headers=["Timestamp", "Open-Mistral-Nemo", "Mistral-Medium"],
wrap=True,
elem_classes="table-style"
)
with gr.TabItem("Analysis Results"):
analysis = gr.DataFrame(
headers=[
"Timestamp",
"Open-Mistral-Nemo Sentiment",
"Mistral-Medium Sentiment",
"Open-Mistral-Nemo Keywords",
"Mistral-Medium Keywords",
"Open-Mistral-Nemo Readability",
"Mistral-Medium Readability"
],
wrap=True,
elem_classes="table-style"
)
with gr.TabItem("Model Parameters"):
params = gr.DataFrame(
headers=[
"Timestamp",
"Temperature",
"Top P",
"Max Tokens",
"Stop Sequences",
"Random Seed",
"Safe Prompt"
],
wrap=True,
elem_classes="table-style"
)
# Footer with links and additional info
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #E5E7EB;">
<div style="margin-bottom: 20px;">
<h3 style="color: #4F46E5;">Built with Pixeltable</h3>
<p style="color: #6B7280;">The unified data infrastructure for AI applications</p>
</div>
<div style="display: flex; justify-content: center; gap: 20px;">
<a href="https://github.com/pixeltable/pixeltable" target="_blank"
style="color: #4F46E5; text-decoration: none;">
π Documentation
</a>
<a href="https://github.com/pixeltable/pixeltable" target="_blank"
style="color: #4F46E5; text-decoration: none;">
π» GitHub
</a>
<a href="https://join.slack.com/t/pixeltablecommunity/shared_invite/zt-21fybjbn2-fZC_SJiuG6QL~Ai8T6VpFQ" target="_blank"
style="color: #4F46E5; text-decoration: none;">
π¬ Community
</a>
</div>
</div>
""")
# Custom CSS
gr.HTML("""
<style>
.input-style {
border: 1px solid #E5E7EB !important;
border-radius: 8px !important;
padding: 12px !important;
}
.output-style {
background-color: #F9FAFB !important;
border-radius: 8px !important;
padding: 12px !important;
}
.table-style {
border-collapse: collapse !important;
width: 100% !important;
}
.table-style th {
background-color: #F3F4F6 !important;
padding: 12px !important;
}
.examples-style {
margin: 20px 0;
padding: 15px;
border: 1px solid #E5E7EB;
border-radius: 8px;
background-color: white;
}
.examples-style .example-card {
border: 1px solid #E5E7EB;
border-radius: 6px;
padding: 12px;
margin-bottom: 10px;
transition: all 0.2s;
}
.examples-style .example-card:hover {
border-color: #4F46E5;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""")
submit_btn.click(
run_inference_and_analysis,
inputs=[
task, system_prompt, input_text,
temperature, top_p, max_tokens,
stop, random_seed, safe_prompt
],
outputs=[
omn_response, ml_response,
large_sentiment, open_sentiment,
large_keywords, open_keywords,
large_readability, open_readability,
history, responses, analysis, params # Added params here
]
)
return demo
if __name__ == "__main__":
gradio_interface().launch() |