|
from langchain_community.vectorstores import FAISS
|
|
from config import embeddings, llm, llm2
|
|
from pprint import pprint
|
|
from langchain.retrievers.document_compressors import FlashrankRerank
|
|
from langchain.retrievers import ContextualCompressionRetriever
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
compressor = FlashrankRerank()
|
|
|
|
def get_vectoreDB(file_path:str):
|
|
|
|
path = f"vectors/{file_path}".replace(".pdf","").replace("data/","")
|
|
vectoreStore = FAISS.load_local(
|
|
path,
|
|
embeddings,
|
|
allow_dangerous_deserialization=True
|
|
)
|
|
|
|
vectoreStore_as_retriever = vectoreStore.as_retriever(
|
|
search_type="similarity",
|
|
search_kwargs={
|
|
"k": 10,
|
|
"include_metadata": True
|
|
}
|
|
)
|
|
|
|
|
|
compression_retriever = ContextualCompressionRetriever(
|
|
base_compressor=compressor,
|
|
base_retriever=vectoreStore_as_retriever
|
|
)
|
|
|
|
return compression_retriever
|
|
|
|
|
|
system_prompt = """
|
|
You are a Medical Chatbot named as Medi. Your task is to assist as a doctor.
|
|
|
|
Your tasks are given below:
|
|
- Answer the given question from the given context. If the question is out of context from medical feild, just tell the user "I don't know about it".
|
|
- If the question is related to medical field and not relevent to context, then generate by your own self
|
|
- If the question is about the context given, explain the user according to the most relevent context.
|
|
- Explain the user a proper short Answer, don't copy the whole context, explain it by your self.
|
|
- If someone ask your name, so tell them
|
|
|
|
Remember to answer in a precise way and to the point as a doctor.
|
|
|
|
query: '''{query}'''
|
|
"""
|
|
|
|
PROMPT = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", system_prompt),
|
|
("human", "context: '''{context}'''")
|
|
]
|
|
)
|
|
|
|
llm_chain = PROMPT | llm
|
|
mini_llm_chain = PROMPT | llm2
|
|
|
|
vectoreDB = get_vectoreDB("data/The_GALE_ENCYCLOPEDIA_of_MEDICINE_SECOND.pdf")
|
|
|
|
def ask_ai(query:str, model_name:str):
|
|
docs = vectoreDB.invoke(query)
|
|
context_text = "\n\n---\n\n".join([doc.page_content for doc in docs])
|
|
|
|
if model_name == "4o":
|
|
llm = llm_chain
|
|
elif model_name == "4o-mini":
|
|
llm = mini_llm_chain
|
|
else:
|
|
return "No model found"
|
|
|
|
response = llm.invoke({
|
|
"context": context_text,
|
|
"query" : query
|
|
}
|
|
)
|
|
return response.content |