|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
client_chatgpt = InferenceClient("openai/gpt-3.5-turbo") |
|
client_llama = InferenceClient("meta-llama/Llama-3.2-3B-Instruct") |
|
client_claude = InferenceClient("anthropic/claude-1") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client_llama.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
|
|
def on_button_click(model_name, message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
if model_name == "Chatgpt": |
|
client = client_chatgpt |
|
elif model_name == "Llama": |
|
client = client_llama |
|
elif model_name == "Claude": |
|
client = client_claude |
|
else: |
|
return "Unknown model selected." |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
css = """ |
|
body { |
|
background-color: #06688E; /* Dark background */ |
|
color: white; /* Text color for better visibility */ |
|
} |
|
.gr-button { |
|
background-color: #42B3CE !important; /* White button color */ |
|
color: black !important; /* Black text for contrast */ |
|
border: none !important; |
|
padding: 8px 16px !important; |
|
border-radius: 5px !important; |
|
} |
|
.gr-button:hover { |
|
background-color: #e0e0e0 !important; /* Slightly lighter button on hover */ |
|
} |
|
.gr-slider-container { |
|
color: white !important; /* Slider labels in white */ |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
system_message = gr.Textbox(value="You are a virtual health assistant...", label="System message", visible=False) |
|
message_input = gr.Textbox(label="User message") |
|
history = gr.State([]) |
|
max_tokens_slider = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") |
|
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
|
|
|
|
gr.Button("Chatgpt").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") |
|
gr.Button("Llama").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") |
|
gr.Button("Claude").click(on_button_click, inputs=[message_input, history, system_message, max_tokens_slider, temperature_slider, top_p_slider], outputs="text") |
|
|
|
|
|
demo.css = css |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|