File size: 5,237 Bytes
86d1671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c167991
 
 
 
 
 
 
86d1671
 
c167991
86d1671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c167991
 
86d1671
 
 
 
 
 
c167991
 
86d1671
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
import os

api_token = os.getenv("HF_TOKEN")

# List of LLMs
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load and split PDF documents
def load_doc(list_file_path):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits):
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb

# Initialize LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
    if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token=api_token,
            temperature=temperature,
            max_new_tokens=max_tokens,
            top_k=top_k,
        )
    else:
        llm = HuggingFaceEndpoint(
            huggingfacehub_api_token=api_token,
            repo_id=llm_model,
            temperature=temperature,
            max_new_tokens=max_tokens,
            top_k=top_k,
        )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

# Function to handle chatbot responses
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    vector_db,
    llm_model,
):
    # Initialize LLM chain if not already initialized
    if not hasattr(respond, 'qa_chain'):
        respond.qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_p, vector_db)

    # Format chat history
    formatted_chat_history = []
    for user_message, bot_message in history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    formatted_chat_history.append(f"User: {message}")

    # Generate response using QA chain
    response = respond.qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]

    return response_answer

# CSS for styling the interface
css = """
body {
    background-color: #06688E; /* Dark background */
    color: white; /* Text color for better visibility */
}
.gr-button {
    background-color: #42B3CE !important; /* White button color */
    color: black !important; /* Black text for contrast */
    border: none !important;
    padding: 8px 16px !important;
    border-radius: 5px !important;
}
.gr-button:hover {
    background-color: #e0e0e0 !important; /* Slightly lighter button on hover */
}
.gr-slider-container {
    color: white !important; /* Slider labels in white */
}
"""

# Initialize database and LLM chain
def initialize_database_and_llm(list_file_obj, llm_option, max_tokens, temperature, top_p):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path)
    vector_db = create_db(doc_splits)
    llm_name = list_llm[llm_option]
    return vector_db, llm_name

# Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Files(file_count="multiple", file_types=["pdf"], label="Upload PDF documents", visible=False),
        gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple, visible=False),
        gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max new tokens", visible=False),
        gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", visible=False),
        gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-k", visible=False),
    ],
    css=css,
    title="RAG PDF Chatbot",
    description="Query your PDF documents using a Retrieval Augmented Generation (RAG) chatbot.",
)

# Preprocessing events
demo.preprocess(
    initialize_database_and_llm,
    inputs=["document", "llm_btn", "slider_maxtokens", "slider_temperature", "slider_topk"],
    outputs=["vector_db", "llm_model"],
    api_name="initialize",
)

if __name__ == "__main__":
    demo.launch(share=True)