|
import gradio as gr |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
import os |
|
|
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
def load_doc(list_file_path): |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits): |
|
embeddings = HuggingFaceEmbeddings() |
|
vectordb = FAISS.from_documents(splits, embeddings) |
|
return vectordb |
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): |
|
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
else: |
|
llm = HuggingFaceEndpoint( |
|
huggingfacehub_api_token=api_token, |
|
repo_id=llm_model, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever = vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
return qa_chain |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
vector_db, |
|
llm_model, |
|
): |
|
|
|
if not hasattr(respond, 'qa_chain'): |
|
respond.qa_chain = initialize_llmchain(llm_model, temperature, max_tokens, top_p, vector_db) |
|
|
|
|
|
formatted_chat_history = [] |
|
for user_message, bot_message in history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
formatted_chat_history.append(f"User: {message}") |
|
|
|
|
|
response = respond.qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
|
|
return response_answer |
|
|
|
|
|
css = """ |
|
body { |
|
background-color: #06688E; /* Dark background */ |
|
color: white; /* Text color for better visibility */ |
|
} |
|
.gr-button { |
|
background-color: #42B3CE !important; /* White button color */ |
|
color: black !important; /* Black text for contrast */ |
|
border: none !important; |
|
padding: 8px 16px !important; |
|
border-radius: 5px !important; |
|
} |
|
.gr-button:hover { |
|
background-color: #e0e0e0 !important; /* Slightly lighter button on hover */ |
|
} |
|
.gr-slider-container { |
|
color: white !important; /* Slider labels in white */ |
|
} |
|
""" |
|
|
|
|
|
def initialize_database_and_llm(list_file_obj, llm_option, max_tokens, temperature, top_p): |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
doc_splits = load_doc(list_file_path) |
|
vector_db = create_db(doc_splits) |
|
llm_name = list_llm[llm_option] |
|
return vector_db, llm_name |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Files(file_count="multiple", file_types=["pdf"], label="Upload PDF documents", visible=False), |
|
gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple, visible=False), |
|
gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max new tokens", visible=False), |
|
gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", visible=False), |
|
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-k", visible=False), |
|
], |
|
css=css, |
|
title="RAG PDF Chatbot", |
|
description="Query your PDF documents using a Retrieval Augmented Generation (RAG) chatbot.", |
|
) |
|
|
|
|
|
demo.preprocess( |
|
initialize_database_and_llm, |
|
inputs=["document", "llm_btn", "slider_maxtokens", "slider_temperature", "slider_topk"], |
|
outputs=["vector_db", "llm_model"], |
|
api_name="initialize", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|