gpt_detect23 / app.py
Prakhar618's picture
Update app.py
6a0e854 verified
raw
history blame
1.47 kB
import gradio as gr
from transformers import pipeline
from datasets import Dataset, DatasetDict
import pandas as pd
import numpy as np
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments
token = os.environ.get('token', None)
huggingface-cli login --token token
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
def tokenize_function(examples):
return tokenizer(examples['text'], padding=True, truncation=True,
max_length=256)
def predict(text):
# Convert test dataframe to Hugging Face
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
# Apply the tokenization function to the train dataset
train_dataset1 = test_dataset.map(tokenize_function, batched=True,)
predictions, label_probs, _ = trainer.predict(train_dataset1)
y_pred = np.argmax(predictions, axis=1)
return y_pred
# Create Gradio interface
text_input = gr.Textbox(lines=7, label="Input Text", placeholder="Enter your text here...")
output_text = gr.Textbox(label="Predicted Sentiment")
test_args = TrainingArguments(
do_train=False,
do_predict=True,
per_device_eval_batch_size = 2
)
trainer = Trainer(
model=model,
args=test_args,
)
iface = gr.Interface(fn=predict, inputs=text_input, outputs=output_text)
iface.launch(share=True)