Spaces:
Runtime error
Runtime error
# Copyright 2020 Erik Härkönen. All rights reserved. | |
# This file is licensed to you under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. You may obtain a copy | |
# of the License at http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software distributed under | |
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS | |
# OF ANY KIND, either express or implied. See the License for the specific language | |
# governing permissions and limitations under the License. | |
import torch | |
import numpy as np | |
import re | |
import os | |
import random | |
from pathlib import Path | |
from types import SimpleNamespace | |
from utils import download_ckpt | |
from config import Config | |
from netdissect import proggan, zdataset | |
from . import biggan | |
from . import stylegan | |
from . import stylegan2 | |
from abc import abstractmethod, ABC as AbstractBaseClass | |
from functools import singledispatch | |
class BaseModel(AbstractBaseClass, torch.nn.Module): | |
# Set parameters for identifying model from instance | |
def __init__(self, model_name, class_name): | |
super(BaseModel, self).__init__() | |
self.model_name = model_name | |
self.outclass = class_name | |
# Stop model evaluation as soon as possible after | |
# given layer has been executed, used to speed up | |
# netdissect.InstrumentedModel::retain_layer(). | |
# Validate with tests/partial_forward_test.py | |
# Can use forward() as fallback at the cost of performance. | |
def partial_forward(self, x, layer_name): | |
pass | |
# Generate batch of latent vectors | |
def sample_latent(self, n_samples=1, seed=None, truncation=None): | |
pass | |
# Maximum number of latents that can be provided | |
# Typically one for each layer | |
def get_max_latents(self): | |
return 1 | |
# Name of primary latent space | |
# E.g. StyleGAN can alternatively use W | |
def latent_space_name(self): | |
return 'Z' | |
def get_latent_shape(self): | |
return tuple(self.sample_latent(1).shape) | |
def get_latent_dims(self): | |
return np.prod(self.get_latent_shape()) | |
def set_output_class(self, new_class): | |
self.outclass = new_class | |
# Map from typical range [-1, 1] to [0, 1] | |
def forward(self, x): | |
out = self.model.forward(x) | |
return 0.5*(out+1) | |
# Generate images | |
def sample(self, z=None, n_samples=1, seed=None): | |
if z is None: | |
z = self.sample_latent(n_samples, seed=seed) | |
elif isinstance(z, list): | |
z = [torch.tensor(l).to(self.device) if not torch.is_tensor(l) else l for l in z] | |
elif not torch.is_tensor(z): | |
z = torch.tensor(z).to(self.device) | |
img = self.forward(z) | |
return img | |
# For models that use part of latent as conditioning | |
def get_conditional_state(self, z): | |
return None | |
# For models that use part of latent as conditioning | |
def set_conditional_state(self, z, c): | |
return z | |
def named_modules(self, *args, **kwargs): | |
return self.model.named_modules(*args, **kwargs) | |
# PyTorch port of StyleGAN 2 | |
class StyleGAN2(BaseModel): | |
def __init__(self, device, class_name, truncation=1.0, use_w=False): | |
super(StyleGAN2, self).__init__('StyleGAN2', class_name or 'ffhq') | |
self.device = device | |
self.truncation = truncation | |
self.latent_avg = None | |
self.w_primary = use_w # use W as primary latent space? | |
# Image widths | |
configs = { | |
# Converted NVIDIA official | |
'ffhq': 1024, | |
'car': 512, | |
'cat': 256, | |
'church': 256, | |
'horse': 256, | |
# Tuomas | |
'bedrooms': 256, | |
'kitchen': 256, | |
'places': 256, | |
'lookbook': 512 | |
} | |
assert self.outclass in configs, \ | |
f'Invalid StyleGAN2 class {self.outclass}, should be one of [{", ".join(configs.keys())}]' | |
self.resolution = configs[self.outclass] | |
self.name = f'StyleGAN2-{self.outclass}' | |
self.has_latent_residual = True | |
self.load_model() | |
self.set_noise_seed(0) | |
def latent_space_name(self): | |
return 'W' if self.w_primary else 'Z' | |
def use_w(self): | |
self.w_primary = True | |
def use_z(self): | |
self.w_primary = False | |
# URLs created with https://sites.google.com/site/gdocs2direct/ | |
def download_checkpoint(self, outfile): | |
checkpoints = { | |
'horse': 'https://drive.google.com/uc?export=download&id=18SkqWAkgt0fIwDEf2pqeaenNi4OoCo-0', | |
'ffhq': 'https://drive.google.com/uc?export=download&id=1FJRwzAkV-XWbxgTwxEmEACvuqF5DsBiV', | |
'church': 'https://drive.google.com/uc?export=download&id=1HFM694112b_im01JT7wop0faftw9ty5g', | |
'car': 'https://drive.google.com/uc?export=download&id=1iRoWclWVbDBAy5iXYZrQnKYSbZUqXI6y', | |
'cat': 'https://drive.google.com/uc?export=download&id=15vJP8GDr0FlRYpE8gD7CdeEz2mXrQMgN', | |
'places': 'https://drive.google.com/uc?export=download&id=1X8-wIH3aYKjgDZt4KMOtQzN1m4AlCVhm', | |
'bedrooms': 'https://drive.google.com/uc?export=download&id=1nZTW7mjazs-qPhkmbsOLLA_6qws-eNQu', | |
'kitchen': 'https://drive.google.com/uc?export=download&id=15dCpnZ1YLAnETAPB0FGmXwdBclbwMEkZ', | |
'lookbook': 'https://github.com/prathmeshdahikar/FashionGen/releases/download/v1.0/stylegan2_lookbook_512.pt' | |
} | |
url = checkpoints[self.outclass] | |
download_ckpt(url, outfile) | |
def load_model(self): | |
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') | |
checkpoint = Path(checkpoint_root) / f'stylegan2/stylegan2_{self.outclass}_{self.resolution}.pt' | |
self.model = stylegan2.Generator(self.resolution, 512, 8).to(self.device) | |
if not checkpoint.is_file(): | |
os.makedirs(checkpoint.parent, exist_ok=True) | |
self.download_checkpoint(checkpoint) | |
ckpt = torch.load(checkpoint) | |
self.model.load_state_dict(ckpt['g_ema'], strict=False) | |
self.latent_avg = 0 | |
def sample_latent(self, n_samples=1, seed=None, truncation=None): | |
if seed is None: | |
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state | |
rng = np.random.RandomState(seed) | |
z = torch.from_numpy( | |
rng.standard_normal(512 * n_samples) | |
.reshape(n_samples, 512)).float().to(self.device) #[N, 512] | |
if self.w_primary: | |
z = self.model.style(z) | |
return z | |
def get_max_latents(self): | |
return self.model.n_latent | |
def set_output_class(self, new_class): | |
if self.outclass != new_class: | |
raise RuntimeError('StyleGAN2: cannot change output class without reloading') | |
def forward(self, x): | |
x = x if isinstance(x, list) else [x] | |
out, _ = self.model(x, noise=self.noise, | |
truncation=self.truncation, truncation_latent=self.latent_avg, input_is_w=self.w_primary) | |
return 0.5*(out+1) | |
def partial_forward(self, x, layer_name): | |
styles = x if isinstance(x, list) else [x] | |
inject_index = None | |
noise = self.noise | |
if not self.w_primary: | |
styles = [self.model.style(s) for s in styles] | |
if len(styles) == 1: | |
# One global latent | |
inject_index = self.model.n_latent | |
latent = self.model.strided_style(styles[0].unsqueeze(1).repeat(1, inject_index, 1)) # [N, 18, 512] | |
elif len(styles) == 2: | |
# Latent mixing with two latents | |
if inject_index is None: | |
inject_index = random.randint(1, self.model.n_latent - 1) | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.model.n_latent - inject_index, 1) | |
latent = self.model.strided_style(torch.cat([latent, latent2], 1)) | |
else: | |
# One latent per layer | |
assert len(styles) == self.model.n_latent, f'Expected {self.model.n_latents} latents, got {len(styles)}' | |
styles = torch.stack(styles, dim=1) # [N, 18, 512] | |
latent = self.model.strided_style(styles) | |
if 'style' in layer_name: | |
return | |
out = self.model.input(latent) | |
if 'input' == layer_name: | |
return | |
out = self.model.conv1(out, latent[:, 0], noise=noise[0]) | |
if 'conv1' in layer_name: | |
return | |
skip = self.model.to_rgb1(out, latent[:, 1]) | |
if 'to_rgb1' in layer_name: | |
return | |
i = 1 | |
noise_i = 1 | |
for conv1, conv2, to_rgb in zip( | |
self.model.convs[::2], self.model.convs[1::2], self.model.to_rgbs | |
): | |
out = conv1(out, latent[:, i], noise=noise[noise_i]) | |
if f'convs.{i-1}' in layer_name: | |
return | |
out = conv2(out, latent[:, i + 1], noise=noise[noise_i + 1]) | |
if f'convs.{i}' in layer_name: | |
return | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
if f'to_rgbs.{i//2}' in layer_name: | |
return | |
i += 2 | |
noise_i += 2 | |
image = skip | |
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') | |
def set_noise_seed(self, seed): | |
torch.manual_seed(seed) | |
self.noise = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=self.device)] | |
for i in range(3, self.model.log_size + 1): | |
for _ in range(2): | |
self.noise.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=self.device)) | |
# PyTorch port of StyleGAN 1 | |
class StyleGAN(BaseModel): | |
def __init__(self, device, class_name, truncation=1.0, use_w=False): | |
super(StyleGAN, self).__init__('StyleGAN', class_name or 'ffhq') | |
self.device = device | |
self.w_primary = use_w # is W primary latent space? | |
configs = { | |
# Official | |
'ffhq': 1024, | |
'celebahq': 1024, | |
'bedrooms': 256, | |
'cars': 512, | |
'cats': 256, | |
# From https://github.com/justinpinkney/awesome-pretrained-stylegan | |
'vases': 1024, | |
'wikiart': 512, | |
'fireworks': 512, | |
'abstract': 512, | |
'anime': 512, | |
'ukiyo-e': 512, | |
} | |
assert self.outclass in configs, \ | |
f'Invalid StyleGAN class {self.outclass}, should be one of [{", ".join(configs.keys())}]' | |
self.resolution = configs[self.outclass] | |
self.name = f'StyleGAN-{self.outclass}' | |
self.has_latent_residual = True | |
self.load_model() | |
self.set_noise_seed(0) | |
def latent_space_name(self): | |
return 'W' if self.w_primary else 'Z' | |
def use_w(self): | |
self.w_primary = True | |
def use_z(self): | |
self.w_primary = False | |
def load_model(self): | |
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') | |
checkpoint = Path(checkpoint_root) / f'stylegan/stylegan_{self.outclass}_{self.resolution}.pt' | |
self.model = stylegan.StyleGAN_G(self.resolution).to(self.device) | |
urls_tf = { | |
'vases': 'https://thisvesseldoesnotexist.s3-us-west-2.amazonaws.com/public/network-snapshot-008980.pkl', | |
'fireworks': 'https://mega.nz/#!7uBHnACY!quIW-pjdDa7NqnZOYh1z5UemWwPOW6HkYSoJ4usCg9U', | |
'abstract': 'https://mega.nz/#!vCQyHQZT!zdeOg3VvT4922Z2UfxO51xgAfJD-NAK2nW7H_jMlilU', | |
'anime': 'https://mega.nz/#!vawjXISI!F7s13yRicxDA3QYqYDL2kjnc2K7Zk3DwCIYETREmBP4', | |
'ukiyo-e': 'https://drive.google.com/uc?id=1CHbJlci9NhVFifNQb3vCGu6zw4eqzvTd', | |
} | |
urls_torch = { | |
'celebahq': 'https://drive.google.com/uc?export=download&id=1lGcRwNoXy_uwXkD6sy43aAa-rMHRR7Ad', | |
'bedrooms': 'https://drive.google.com/uc?export=download&id=1r0_s83-XK2dKlyY3WjNYsfZ5-fnH8QgI', | |
'ffhq': 'https://drive.google.com/uc?export=download&id=1GcxTcLDPYxQqcQjeHpLUutGzwOlXXcks', | |
'cars': 'https://drive.google.com/uc?export=download&id=1aaUXHRHjQ9ww91x4mtPZD0w50fsIkXWt', | |
'cats': 'https://drive.google.com/uc?export=download&id=1JzA5iiS3qPrztVofQAjbb0N4xKdjOOyV', | |
'wikiart': 'https://drive.google.com/uc?export=download&id=1fN3noa7Rsl9slrDXsgZVDsYFxV0O08Vx', | |
} | |
if not checkpoint.is_file(): | |
os.makedirs(checkpoint.parent, exist_ok=True) | |
if self.outclass in urls_torch: | |
download_ckpt(urls_torch[self.outclass], checkpoint) | |
else: | |
checkpoint_tf = checkpoint.with_suffix('.pkl') | |
if not checkpoint_tf.is_file(): | |
download_ckpt(urls_tf[self.outclass], checkpoint_tf) | |
print('Converting TensorFlow checkpoint to PyTorch') | |
self.model.export_from_tf(checkpoint_tf) | |
self.model.load_weights(checkpoint) | |
def sample_latent(self, n_samples=1, seed=None, truncation=None): | |
if seed is None: | |
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state | |
rng = np.random.RandomState(seed) | |
noise = torch.from_numpy( | |
rng.standard_normal(512 * n_samples) | |
.reshape(n_samples, 512)).float().to(self.device) #[N, 512] | |
if self.w_primary: | |
noise = self.model._modules['g_mapping'].forward(noise) | |
return noise | |
def get_max_latents(self): | |
return 18 | |
def set_output_class(self, new_class): | |
if self.outclass != new_class: | |
raise RuntimeError('StyleGAN: cannot change output class without reloading') | |
def forward(self, x): | |
out = self.model.forward(x, latent_is_w=self.w_primary) | |
return 0.5*(out+1) | |
# Run model only until given layer | |
def partial_forward(self, x, layer_name): | |
mapping = self.model._modules['g_mapping'] | |
G = self.model._modules['g_synthesis'] | |
trunc = self.model._modules.get('truncation', lambda x : x) | |
if not self.w_primary: | |
x = mapping.forward(x) # handles list inputs | |
if isinstance(x, list): | |
x = torch.stack(x, dim=1) | |
else: | |
x = x.unsqueeze(1).expand(-1, 18, -1) | |
# Whole mapping | |
if 'g_mapping' in layer_name: | |
return | |
x = trunc(x) | |
if layer_name == 'truncation': | |
return | |
# Get names of children | |
def iterate(m, name, seen): | |
children = getattr(m, '_modules', []) | |
if len(children) > 0: | |
for child_name, module in children.items(): | |
seen += iterate(module, f'{name}.{child_name}', seen) | |
return seen | |
else: | |
return [name] | |
# Generator | |
batch_size = x.size(0) | |
for i, (n, m) in enumerate(G.blocks.items()): # InputBlock or GSynthesisBlock | |
if i == 0: | |
r = m(x[:, 2*i:2*i+2]) | |
else: | |
r = m(r, x[:, 2*i:2*i+2]) | |
children = iterate(m, f'g_synthesis.blocks.{n}', []) | |
for c in children: | |
if layer_name in c: # substring | |
return | |
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') | |
def set_noise_seed(self, seed): | |
G = self.model._modules['g_synthesis'] | |
def for_each_child(this, name, func): | |
children = getattr(this, '_modules', []) | |
for child_name, module in children.items(): | |
for_each_child(module, f'{name}.{child_name}', func) | |
func(this, name) | |
def modify(m, name): | |
if isinstance(m, stylegan.NoiseLayer): | |
H, W = [int(s) for s in name.split('.')[2].split('x')] | |
torch.random.manual_seed(seed) | |
m.noise = torch.randn(1, 1, H, W, device=self.device, dtype=torch.float32) | |
#m.noise = 1.0 # should be [N, 1, H, W], but this also works | |
for_each_child(G, 'g_synthesis', modify) | |
class GANZooModel(BaseModel): | |
def __init__(self, device, model_name): | |
super(GANZooModel, self).__init__(model_name, 'default') | |
self.device = device | |
self.base_model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub', | |
model_name, pretrained=True, useGPU=(device.type == 'cuda')) | |
self.model = self.base_model.netG.to(self.device) | |
self.name = model_name | |
self.has_latent_residual = False | |
def sample_latent(self, n_samples=1, seed=0, truncation=None): | |
# Uses torch.randn | |
noise, _ = self.base_model.buildNoiseData(n_samples) | |
return noise | |
# Don't bother for now | |
def partial_forward(self, x, layer_name): | |
return self.forward(x) | |
def get_conditional_state(self, z): | |
return z[:, -20:] # last 20 = conditioning | |
def set_conditional_state(self, z, c): | |
z[:, -20:] = c | |
return z | |
def forward(self, x): | |
out = self.base_model.test(x) | |
return 0.5*(out+1) | |
class ProGAN(BaseModel): | |
def __init__(self, device, lsun_class=None): | |
super(ProGAN, self).__init__('ProGAN', lsun_class) | |
self.device = device | |
# These are downloaded by GANDissect | |
valid_classes = [ 'bedroom', 'churchoutdoor', 'conferenceroom', 'diningroom', 'kitchen', 'livingroom', 'restaurant' ] | |
assert self.outclass in valid_classes, \ | |
f'Invalid LSUN class {self.outclass}, should be one of {valid_classes}' | |
self.load_model() | |
self.name = f'ProGAN-{self.outclass}' | |
self.has_latent_residual = False | |
def load_model(self): | |
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') | |
checkpoint = Path(checkpoint_root) / f'progan/{self.outclass}_lsun.pth' | |
if not checkpoint.is_file(): | |
os.makedirs(checkpoint.parent, exist_ok=True) | |
url = f'http://netdissect.csail.mit.edu/data/ganmodel/karras/{self.outclass}_lsun.pth' | |
download_ckpt(url, checkpoint) | |
self.model = proggan.from_pth_file(str(checkpoint.resolve())).to(self.device) | |
def sample_latent(self, n_samples=1, seed=None, truncation=None): | |
if seed is None: | |
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state | |
noise = zdataset.z_sample_for_model(self.model, n_samples, seed=seed)[...] | |
return noise.to(self.device) | |
def forward(self, x): | |
if isinstance(x, list): | |
assert len(x) == 1, "ProGAN only supports a single global latent" | |
x = x[0] | |
out = self.model.forward(x) | |
return 0.5*(out+1) | |
# Run model only until given layer | |
def partial_forward(self, x, layer_name): | |
assert isinstance(self.model, torch.nn.Sequential), 'Expected sequential model' | |
if isinstance(x, list): | |
assert len(x) == 1, "ProGAN only supports a single global latent" | |
x = x[0] | |
x = x.view(x.shape[0], x.shape[1], 1, 1) | |
for name, module in self.model._modules.items(): # ordered dict | |
x = module(x) | |
if name == layer_name: | |
return | |
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward') | |
class BigGAN(BaseModel): | |
def __init__(self, device, resolution, class_name, truncation=1.0): | |
super(BigGAN, self).__init__(f'BigGAN-{resolution}', class_name) | |
self.device = device | |
self.truncation = truncation | |
self.load_model(f'biggan-deep-{resolution}') | |
self.set_output_class(class_name or 'husky') | |
self.name = f'BigGAN-{resolution}-{self.outclass}-t{self.truncation}' | |
self.has_latent_residual = True | |
# Default implementaiton fails without an internet | |
# connection, even if the model has been cached | |
def load_model(self, name): | |
if name not in biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP: | |
raise RuntimeError('Unknown BigGAN model name', name) | |
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints') | |
model_path = Path(checkpoint_root) / name | |
os.makedirs(model_path, exist_ok=True) | |
model_file = model_path / biggan.model.WEIGHTS_NAME | |
config_file = model_path / biggan.model.CONFIG_NAME | |
model_url = biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP[name] | |
config_url = biggan.model.PRETRAINED_CONFIG_ARCHIVE_MAP[name] | |
for filename, url in ((model_file, model_url), (config_file, config_url)): | |
if not filename.is_file(): | |
print('Downloading', url) | |
with open(filename, 'wb') as f: | |
if url.startswith("s3://"): | |
biggan.s3_get(url, f) | |
else: | |
biggan.http_get(url, f) | |
self.model = biggan.BigGAN.from_pretrained(model_path).to(self.device) | |
def sample_latent(self, n_samples=1, truncation=None, seed=None): | |
if seed is None: | |
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state | |
noise_vector = biggan.truncated_noise_sample(truncation=truncation or self.truncation, batch_size=n_samples, seed=seed) | |
noise = torch.from_numpy(noise_vector) #[N, 128] | |
return noise.to(self.device) | |
# One extra for gen_z | |
def get_max_latents(self): | |
return len(self.model.config.layers) + 1 | |
def get_conditional_state(self, z): | |
return self.v_class | |
def set_conditional_state(self, z, c): | |
self.v_class = c | |
def is_valid_class(self, class_id): | |
if isinstance(class_id, int): | |
return class_id < 1000 | |
elif isinstance(class_id, str): | |
return biggan.one_hot_from_names([class_id.replace(' ', '_')]) is not None | |
else: | |
raise RuntimeError(f'Unknown class identifier {class_id}') | |
def set_output_class(self, class_id): | |
if isinstance(class_id, int): | |
self.v_class = torch.from_numpy(biggan.one_hot_from_int([class_id])).to(self.device) | |
self.outclass = f'class{class_id}' | |
elif isinstance(class_id, str): | |
self.outclass = class_id.replace(' ', '_') | |
self.v_class = torch.from_numpy(biggan.one_hot_from_names([class_id])).to(self.device) | |
else: | |
raise RuntimeError(f'Unknown class identifier {class_id}') | |
def forward(self, x): | |
# Duplicate along batch dimension | |
if isinstance(x, list): | |
c = self.v_class.repeat(x[0].shape[0], 1) | |
class_vector = len(x)*[c] | |
else: | |
class_vector = self.v_class.repeat(x.shape[0], 1) | |
out = self.model.forward(x, class_vector, self.truncation) # [N, 3, 128, 128], in [-1, 1] | |
return 0.5*(out+1) | |
# Run model only until given layer | |
# Used to speed up PCA sample collection | |
def partial_forward(self, x, layer_name): | |
if layer_name in ['embeddings', 'generator.gen_z']: | |
n_layers = 0 | |
elif 'generator.layers' in layer_name: | |
layer_base = re.match('^generator\.layers\.[0-9]+', layer_name)[0] | |
n_layers = int(layer_base.split('.')[-1]) + 1 | |
else: | |
n_layers = len(self.model.config.layers) | |
if not isinstance(x, list): | |
x = self.model.n_latents*[x] | |
if isinstance(self.v_class, list): | |
labels = [c.repeat(x[0].shape[0], 1) for c in class_label] | |
embed = [self.model.embeddings(l) for l in labels] | |
else: | |
class_label = self.v_class.repeat(x[0].shape[0], 1) | |
embed = len(x)*[self.model.embeddings(class_label)] | |
assert len(x) == self.model.n_latents, f'Expected {self.model.n_latents} latents, got {len(x)}' | |
assert len(embed) == self.model.n_latents, f'Expected {self.model.n_latents} class vectors, got {len(class_label)}' | |
cond_vectors = [torch.cat((z, e), dim=1) for (z, e) in zip(x, embed)] | |
# Generator forward | |
z = self.model.generator.gen_z(cond_vectors[0]) | |
z = z.view(-1, 4, 4, 16 * self.model.generator.config.channel_width) | |
z = z.permute(0, 3, 1, 2).contiguous() | |
cond_idx = 1 | |
for i, layer in enumerate(self.model.generator.layers[:n_layers]): | |
if isinstance(layer, biggan.GenBlock): | |
z = layer(z, cond_vectors[cond_idx], self.truncation) | |
cond_idx += 1 | |
else: | |
z = layer(z) | |
return None | |
# Version 1: separate parameters | |
def get_model(name, output_class, device, **kwargs): | |
# Check if optionally provided existing model can be reused | |
inst = kwargs.get('inst', None) | |
model = kwargs.get('model', None) | |
if inst or model: | |
cached = model or inst.model | |
network_same = (cached.model_name == name) | |
outclass_same = (cached.outclass == output_class) | |
can_change_class = ('BigGAN' in name) | |
if network_same and (outclass_same or can_change_class): | |
cached.set_output_class(output_class) | |
return cached | |
if name == 'DCGAN': | |
import warnings | |
warnings.filterwarnings("ignore", message="nn.functional.tanh is deprecated") | |
model = GANZooModel(device, 'DCGAN') | |
elif name == 'ProGAN': | |
model = ProGAN(device, output_class) | |
elif 'BigGAN' in name: | |
assert '-' in name, 'Please specify BigGAN resolution, e.g. BigGAN-512' | |
model = BigGAN(device, name.split('-')[-1], class_name=output_class) | |
elif name == 'StyleGAN': | |
model = StyleGAN(device, class_name=output_class) | |
elif name == 'StyleGAN2': | |
model = StyleGAN2(device, class_name=output_class) | |
else: | |
raise RuntimeError(f'Unknown model {name}') | |
return model | |
# Version 2: Config object | |
def _(cfg, device, **kwargs): | |
kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg | |
return get_model(cfg.model, cfg.output_class, device, **kwargs) | |
# Version 1: separate parameters | |
def get_instrumented_model(name, output_class, layers, device, **kwargs): | |
model = get_model(name, output_class, device, **kwargs) | |
model.eval() | |
inst = kwargs.get('inst', None) | |
if inst: | |
inst.close() | |
if not isinstance(layers, list): | |
layers = [layers] | |
# Verify given layer names | |
module_names = [name for (name, _) in model.named_modules()] | |
for layer_name in layers: | |
if not layer_name in module_names: | |
print(f"Layer '{layer_name}' not found in model!") | |
print("Available layers:", '\n'.join(module_names)) | |
raise RuntimeError(f"Unknown layer '{layer_name}''") | |
# Reset StyleGANs to z mode for shape annotation | |
if hasattr(model, 'use_z'): | |
model.use_z() | |
from netdissect.modelconfig import create_instrumented_model | |
inst = create_instrumented_model(SimpleNamespace( | |
model = model, | |
layers = layers, | |
cuda = device.type == 'cuda', | |
gen = True, | |
latent_shape = model.get_latent_shape() | |
)) | |
if kwargs.get('use_w', False): | |
model.use_w() | |
return inst | |
# Version 2: Config object | |
def _(cfg, device, **kwargs): | |
kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg | |
return get_instrumented_model(cfg.model, cfg.output_class, cfg.layer, device, **kwargs) | |