File size: 11,907 Bytes
fca4a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ac8362
fca4a0b
 
 
 
 
 
0ac8362
fca4a0b
 
 
 
 
 
 
0ac8362
fca4a0b
 
 
 
 
a03b10d
fca4a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61be7b
fca4a0b
 
 
b61be7b
fca4a0b
 
b61be7b
fca4a0b
 
ac79aff
fca4a0b
a03b10d
fca4a0b
 
3858190
fca4a0b
 
 
 
 
 
 
 
 
 
 
4600684
fca4a0b
 
0ebb9ed
fca4a0b
 
 
0ebb9ed
fca4a0b
0ebb9ed
fca4a0b
 
 
 
 
 
 
 
 
 
 
 
 
0ebb9ed
fca4a0b
 
0ebb9ed
fca4a0b
0ebb9ed
 
 
fca4a0b
 
 
 
 
 
 
 
 
 
 
0ebb9ed
 
fca4a0b
 
 
 
 
 
 
0ebb9ed
 
 
 
fca4a0b
 
 
 
 
 
 
 
 
6b85062
 
 
fca4a0b
0ebb9ed
fca4a0b
5b6aa72
fca4a0b
 
 
 
 
a01685d
fca4a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b85062
 
 
 
 
 
 
ab7606f
fca4a0b
 
 
 
ab7606f
fca4a0b
 
 
 
 
 
 
 
 
1ef6e19
e11ad06
fca4a0b
e11ad06
6b85062
e11ad06
6b85062
 
e11ad06
 
 
 
 
 
 
 
 
18aa83e
 
e11ad06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca4a0b
 
 
a01685d
fca4a0b
a01685d
fca4a0b
3858190
a01685d
0ac8362
fca4a0b
 
3858190
6b85062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os

# logger = logging.getLogger(__name__)

# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")

# class Button:
#     def __init__(self, pos, text, size=[100, 100]):
#         self.pos = pos
#         self.size = size
#         self.text = text

# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# #         ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# #         ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0


# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# #     # Convert the frame to a numpy array (BGR format)
# #     image = frame.to_ndarray(format="bgr24")
    
# #     # Remove background using SelfiSegmentation
# #     imgOut = segmentor.removeBG(image, imgList[indexImg])

# #     # Detect hands on the background-removed image
# #     hands, img = detector.findHands(imgOut, flipType=False)
    
# #     # Create a blank canvas for the keyboard
# #     keyboard_canvas = np.zeros_like(img)
# #     buttonList = []

# #     # Create buttons for the virtual keyboard based on the keys list
# #     for key in keys[0]:
# #         buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# #     for key in keys[1]:
# #         buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# #     for key in keys[2]:
# #         buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))

# #     # Draw the buttons on the keyboard canvas
# #     for button in buttonList:
# #         x, y = button.pos
# #         cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# #         cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)

# #     # Handle input and gestures from detected hands
# #     if hands:
# #         for hand in hands:
# #             lmList = hand["lmList"]
# #             if lmList:
# #                 # Get the coordinates of the index finger tip (landmark 8)
# #                 x8, y8 = lmList[8][0], lmList[8][1]
# #                 for button in buttonList:
# #                     bx, by = button.pos
# #                     bw, bh = button.size
# #                     # Check if the index finger is over a button
# #                     if bx < x8 < bx + bw and by < y8 < by + bh:
# #                         # Highlight the button and update the text
# #                         cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# #                         cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# #                         # Update the output text in session_state
# #                         session_state["output_text"] += button.text

# #     # Corrected return: Create a video frame from the ndarray image
# #     return av.VideoFrame.from_ndarray(img, format="bgr24")






# # Shared state for output text
# if "output_text" not in st.session_state:
#     st.session_state["output_text"] = ""

# class Detection(NamedTuple):
#     label: str
#     score: float
#     box: np.ndarray


# @st.cache_resource  # Cache label colors
# def generate_label_colors():
#     return np.random.uniform(0, 255, size=(2, 3))  # Two classes: Left and Right Hand


# COLORS = generate_label_colors()

# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)

# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     image = frame.to_ndarray(format="bgr24")
#     h, w = image.shape[:2]

#     # Process image with MediaPipe Hands
#     results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

#     detections = []
#     if results.multi_hand_landmarks:
#         for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
#             # Extract bounding box
#             x_min, y_min = 1, 1
#             x_max, y_max = 0, 0
#             for lm in hand_landmarks.landmark:
#                 x_min = min(x_min, lm.x)
#                 y_min = min(y_min, lm.y)
#                 x_max = max(x_max, lm.x)
#                 y_max = max(y_max, lm.y)

#             # Scale bbox to image size
#             box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")

#             # Label and score
#             label = hand_class.classification[0].label
#             score = hand_class.classification[0].score

#             detections.append(Detection(label=label, score=score, box=box))

#             # Draw bounding box and label
#             color = COLORS[0 if label == "Left" else 1]
#             cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
#             caption = f"{label}: {round(score * 100, 2)}%"
#             cv2.putText(
#                 image,
#                 caption,
#                 (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
#                 cv2.FONT_HERSHEY_SIMPLEX,
#                 0.5,
#                 color,
#                 2,
#             )

#     # Put results in the queue
#     result_queue.put(detections)

#     return av.VideoFrame.from_ndarray(image, format="bgr24")



# webrtc_ctx = webrtc_streamer(
#     key="keyboard-demo",
#     mode=WebRtcMode.SENDRECV,
#     rtc_configuration={
#         "iceServers": get_ice_servers(),
#         "iceTransportPolicy": "relay",
#     },
#     video_frame_callback=video_frame_callback,
#     media_stream_constraints={"video": True, "audio": False},
#     async_processing=True,
# )


# st.markdown("### Instructions")
# st.write(
#     """
#     1. Turn on your webcam using the checkbox above.
#     2. Use hand gestures to interact with the virtual keyboard.
#     """
# ) 




import logging
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import os
import time
import av
import queue
from typing import List, NamedTuple
from sample_utils.turn import get_ice_servers

logger = logging.getLogger(__name__)

# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", layout="wide")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')

# Initialize modules
detector = HandDetector(maxHands=1, detectionCon=0.8)
segmentor = SelfiSegmentation()

# Define virtual keyboard layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
        ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
        ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]

class Button:
    def __init__(self, pos, text, size=[100, 100]):
        self.pos = pos
        self.size = size
        self.text = text

class Detection(NamedTuple):
    label: str
    score: float
    box: np.ndarray

result_queue: "queue.Queue[List[Detection]]" = queue.Queue()

listImg = os.listdir('model/street') if os.path.exists('model/street') else []
if not listImg:
    st.error("Error: 'street' directory is missing or empty. Please add background images.")
    st.stop()
else:
    imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]

indexImg = 0
prev_key_time = [time.time()] * 2
output_text = ""

if "output_text" not in st.session_state:
    st.session_state["output_text"] = ""


result_queue=queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    img = frame.to_ndarray(format="bgr24")
    hands, img = detector.findHands(img, flipType=False)

    # Render hand detection results

    if hands:
        hand = hands[0]
        bbox = hand["bbox"]
        cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)

        cv2.putText(img, 'OpenCV', (50,50), font, 
                   fontScale, color, thickness, cv2.LINE_AA)
        cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)

        result_queue.put(hands)
        
    return av.VideoFrame.from_ndarray(img, format="bgr24")

# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
#     global indexImg, output_text

#     img = frame.to_ndarray(format="bgr24")
#     imgOut = segmentor.removeBG(img, imgList[indexImg])
#     hands, imgOut = detector.findHands(imgOut, flipType=False)

#     buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]

#     detections = []
#     if hands:
#         for i, hand in enumerate(hands):
#             lmList = hand['lmList']
#             bbox = hand['bbox']
#             label = "Hand"
#             score = hand['score']
#             box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
#             detections.append(Detection(label=label, score=score, box=box))

#             if lmList:
#                 x4, y4 = lmList[4][0], lmList[4][1]
#                 x8, y8 = lmList[8][0], lmList[8][1]
#                 distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
#                 click_threshold = 10

#                 for button in buttonList:
#                     x, y = button.pos
#                     w, h = button.size
#                     if x < x8 < x + w and y < y8 < y + h:
#                         cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
#                         cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)

#                         if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
#                             if time.time() - prev_key_time[i] > 2:
#                                 prev_key_time[i] = time.time()
#                                 if button.text != 'BS' and button.text != 'SPACE':
#                                     output_text += button.text
#                                 elif button.text == 'BS':
#                                     output_text = output_text[:-1]
#                                 else:
#                                     output_text += ' '

#     result_queue.put(detections)
#     st.session_state["output_text"] = output_text
#     return av.VideoFrame.from_ndarray(imgOut, format="bgr24")

    

webrtc_streamer(
    key="virtual-keyboard",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
    media_stream_constraints={"video": True, "audio": False},
    video_frame_callback=video_frame_callback,
    async_processing=True,
)

st.subheader("Output Text")
st.text_area("Live Input:", value=st.session_state["output_text"], height=200)