File size: 12,917 Bytes
fca4a0b 0ac8362 fca4a0b 0ac8362 fca4a0b 0ac8362 fca4a0b a03b10d fca4a0b b61be7b fca4a0b b61be7b fca4a0b b61be7b fca4a0b ac79aff fca4a0b a03b10d fca4a0b 3858190 fca4a0b 4600684 fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 0ebb9ed fca4a0b 6b85062 fca4a0b 0ebb9ed fca4a0b 5b6aa72 fca4a0b a01685d fca4a0b 6b85062 618adcc 6b85062 ab7606f fca4a0b ab7606f fca4a0b b07cf96 6b85062 b07cf96 6b85062 b07cf96 618adcc b07cf96 5fdbc61 618adcc 5fdbc61 618adcc 6b85062 618adcc 5fdbc61 618adcc 5fdbc61 618adcc 5fdbc61 618adcc e11ad06 5fdbc61 e11ad06 b07cf96 e11ad06 fca4a0b a01685d fca4a0b a01685d fca4a0b 3858190 a01685d 0ac8362 fca4a0b 3858190 6b85062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os
# logger = logging.getLogger(__name__)
# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0
# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # # Convert the frame to a numpy array (BGR format)
# # image = frame.to_ndarray(format="bgr24")
# # # Remove background using SelfiSegmentation
# # imgOut = segmentor.removeBG(image, imgList[indexImg])
# # # Detect hands on the background-removed image
# # hands, img = detector.findHands(imgOut, flipType=False)
# # # Create a blank canvas for the keyboard
# # keyboard_canvas = np.zeros_like(img)
# # buttonList = []
# # # Create buttons for the virtual keyboard based on the keys list
# # for key in keys[0]:
# # buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# # for key in keys[1]:
# # buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# # for key in keys[2]:
# # buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # # Draw the buttons on the keyboard canvas
# # for button in buttonList:
# # x, y = button.pos
# # cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# # cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # # Handle input and gestures from detected hands
# # if hands:
# # for hand in hands:
# # lmList = hand["lmList"]
# # if lmList:
# # # Get the coordinates of the index finger tip (landmark 8)
# # x8, y8 = lmList[8][0], lmList[8][1]
# # for button in buttonList:
# # bx, by = button.pos
# # bw, bh = button.size
# # # Check if the index finger is over a button
# # if bx < x8 < bx + bw and by < y8 < by + bh:
# # # Highlight the button and update the text
# # cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# # cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # # Update the output text in session_state
# # session_state["output_text"] += button.text
# # # Corrected return: Create a video frame from the ndarray image
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# # Shared state for output text
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# @st.cache_resource # Cache label colors
# def generate_label_colors():
# return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
# COLORS = generate_label_colors()
# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# h, w = image.shape[:2]
# # Process image with MediaPipe Hands
# results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# detections = []
# if results.multi_hand_landmarks:
# for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# # Extract bounding box
# x_min, y_min = 1, 1
# x_max, y_max = 0, 0
# for lm in hand_landmarks.landmark:
# x_min = min(x_min, lm.x)
# y_min = min(y_min, lm.y)
# x_max = max(x_max, lm.x)
# y_max = max(y_max, lm.y)
# # Scale bbox to image size
# box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# # Label and score
# label = hand_class.classification[0].label
# score = hand_class.classification[0].score
# detections.append(Detection(label=label, score=score, box=box))
# # Draw bounding box and label
# color = COLORS[0 if label == "Left" else 1]
# cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
# caption = f"{label}: {round(score * 100, 2)}%"
# cv2.putText(
# image,
# caption,
# (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# # Put results in the queue
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# webrtc_ctx = webrtc_streamer(
# key="keyboard-demo",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={
# "iceServers": get_ice_servers(),
# "iceTransportPolicy": "relay",
# },
# video_frame_callback=video_frame_callback,
# media_stream_constraints={"video": True, "audio": False},
# async_processing=True,
# )
# st.markdown("### Instructions")
# st.write(
# """
# 1. Turn on your webcam using the checkbox above.
# 2. Use hand gestures to interact with the virtual keyboard.
# """
# )
import logging
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import os
import time
import av
import queue
from typing import List, NamedTuple
from sample_utils.turn import get_ice_servers
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", layout="wide")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')
# Initialize modules
detector = HandDetector(maxHands=1, detectionCon=0.8)
segmentor = SelfiSegmentation()
# Define virtual keyboard layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
listImg = os.listdir('model/street') if os.path.exists('model/street') else []
if not listImg:
st.error("Error: 'street' directory is missing or empty. Please add background images.")
st.stop()
else:
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
indexImg = 0
prev_key_time = [time.time()] * 2
output_text = ""
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# img = frame.to_ndarray(format="bgr24")
# hands, img = detector.findHands(img, flipType=False)
# # Render hand detection results
# if hands:
# hand = hands[0]
# bbox = hand["bbox"]
# cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
# cv2.putText(img, 'OpenCV', (50,50), font,
# fontScale, color, thickness, cv2.LINE_AA)
# cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
# result_queue.put(hands)
# return av.VideoFrame.from_ndarray(img, format="bgr24")
# Initialize result queue
result_queue = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
# Ensure square input for MediaPipe
h, w, _ = img.shape
size = min(h, w)
img_cropped = img[:size, :size]
# Detect hands
hands, img_cropped = detector.findHands(img_cropped, flipType=False)
# Collect detections
detections = []
if hands:
for hand in hands:
bbox = hand["bbox"]
label = hand["type"]
score = hand["score"]
# Draw bounding box
cv2.rectangle(img_cropped, (bbox[0], bbox[1]),
(bbox[0] + bbox[2], bbox[1] + bbox[3]), (255, 0, 0), 2)
# Append detection details
detections.append({"label": label, "score": score, "bbox": bbox})
# Put detections into result queue
result_queue.put(detections)
return av.VideoFrame.from_ndarray(img_cropped, format="bgr24")
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# global indexImg, output_text
# img = frame.to_ndarray(format="bgr24")
# imgOut = segmentor.removeBG(img, imgList[indexImg])
# hands, imgOut = detector.findHands(imgOut, flipType=False)
# buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
# detections = []
# if hands:
# for i, hand in enumerate(hands):
# lmList = hand['lmList']
# bbox = hand['bbox']
# label = "Hand"
# score = hand['score']
# box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# detections.append(Detection(label=label, score=score, box=box))
# if lmList:
# x4, y4 = lmList[4][0], lmList[4][1]
# x8, y8 = lmList[8][0], lmList[8][1]
# distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# click_threshold = 10
# for button in buttonList:
# x, y = button.pos
# w, h = button.size
# if x < x8 < x + w and y < y8 < y + h:
# cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# if time.time() - prev_key_time[i] > 2:
# prev_key_time[i] = time.time()
# if button.text != 'BS' and button.text != 'SPACE':
# output_text += button.text
# elif button.text == 'BS':
# output_text = output_text[:-1]
# else:
# output_text += ' '
# result_queue.put(detections)
# st.session_state["output_text"] = output_text
# return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
st.subheader("Output Text")
st.text_area("Live Input:", value=st.session_state["output_text"], height=200)
|