File size: 5,706 Bytes
bba6cec eac73a1 1c81ee4 eac73a1 df8ec21 eac73a1 df8ec21 bba6cec a6c914a 768810e bba6cec df8ec21 4a3054c bba6cec df8ec21 bba6cec 2dd8b34 df8ec21 2f4a581 506c444 eac73a1 506c444 768810e 495fa7e 768810e bba6cec eac73a1 bba6cec 1c15637 bba6cec 2dd8b34 506c444 17fe806 2485090 17fe806 bba6cec c19a8a5 df8ec21 c19a8a5 2dd8b34 c19a8a5 2dd8b34 c19a8a5 2dd8b34 bba6cec 4d85c5b 495fa7e 4936a67 a6c914a 4936a67 5040ccb 4936a67 870200a 4936a67 5040ccb a6c914a 5040ccb a6c914a 4936a67 a6c914a 4936a67 a6c914a 4936a67 a6c914a 4936a67 a6c914a 17fe806 768810e 2dd8b34 df8ec21 bba6cec eac73a1 a472ccb eac73a1 768810e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.set_page_config(page_title="AI Squat Detection", page_icon="🏋️")
st.markdown(
"""<style>
.status-box {
background: #f7f7f7;
padding: 15px;
border-radius: 8px;
box-shadow: 2px 2px 5px rgba(0,0,0,0.1);
margin-bottom: 20px;
font-size: 18px;
}
.title {
color: #2E86C1;
font-size: 32px;
font-weight: bold;
text-align: center;
margin-bottom: 10px;
}
.info {
text-align: center;
font-size: 18px;
margin-bottom: 20px;
color: #333;
}
</style>""", unsafe_allow_html=True)
st.markdown('<div class="title">AI Squat Detection</div>', unsafe_allow_html=True)
st.markdown('<div class="info">Use your webcam for real-time squat detection.</div>', unsafe_allow_html=True)
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
class Detection(NamedTuple):
class_id: int
label: str
score: float
box: np.ndarray
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Detection Queue
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global counterL, correct, incorrect, stage
if 'stage' not in globals():
stage = 'up'
correct = 0
incorrect = 0
image = frame.to_ndarray(format="bgr24")
h, w = image.shape[:2]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=0.5, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
) ] if landmarks else []
if landmarks:
hipL = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
kneeL = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankleL = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulderL = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
# Calculate angles
angleKneeL = calculate_angle(hipL, kneeL, ankleL)
angleHipL = calculate_angle(shoulderL, hipL, [hipL[0], 0])
if angleKneeL > 110 and stage == 'down':
stage = 'up'
if 18 < angleHipL < 40:
correct += 1
if 80 < angleKneeL < 110 and stage == 'up':
stage = 'down'
# REP data
# Setup Status box
cv2.rectangle(image, (0,0), (275, 220), (127, 248, 236), -1)
cv2.rectangle(image, (0, 3), (273, 217), (12, 85, 61), -1)
cv2.putText(image, 'Left', (10, 22),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, str(correct),
(10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.7, (255, 255, 255), 2, cv2.LINE_AA)
# Stage data for left leg
cv2.putText(image, 'STAGE', (180, 22),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, stage,
(170, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.7, (255, 255, 255), 2, cv2.LINE_AA)
# Hip angle
cv2.putText(image, 'HipL', (10, 150),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, str(int(angleHipL)),
(0, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.7, (255, 255, 255), 2, cv2.LINE_AA)
# Knee angle
cv2.putText(image, 'Knee', (180, 150),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, str(int(angleKneeL)),
(170, 200), cv2.FONT_HERSHEY_SIMPLEX, 1.7, (255, 255, 255), 2, cv2.LINE_AA)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
webrtc_streamer(
key="squat-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
|