Pratyush101's picture
Update app.py
5fdbc61 verified
raw
history blame
12.9 kB
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os
# logger = logging.getLogger(__name__)
# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0
# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # # Convert the frame to a numpy array (BGR format)
# # image = frame.to_ndarray(format="bgr24")
# # # Remove background using SelfiSegmentation
# # imgOut = segmentor.removeBG(image, imgList[indexImg])
# # # Detect hands on the background-removed image
# # hands, img = detector.findHands(imgOut, flipType=False)
# # # Create a blank canvas for the keyboard
# # keyboard_canvas = np.zeros_like(img)
# # buttonList = []
# # # Create buttons for the virtual keyboard based on the keys list
# # for key in keys[0]:
# # buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# # for key in keys[1]:
# # buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# # for key in keys[2]:
# # buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # # Draw the buttons on the keyboard canvas
# # for button in buttonList:
# # x, y = button.pos
# # cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# # cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # # Handle input and gestures from detected hands
# # if hands:
# # for hand in hands:
# # lmList = hand["lmList"]
# # if lmList:
# # # Get the coordinates of the index finger tip (landmark 8)
# # x8, y8 = lmList[8][0], lmList[8][1]
# # for button in buttonList:
# # bx, by = button.pos
# # bw, bh = button.size
# # # Check if the index finger is over a button
# # if bx < x8 < bx + bw and by < y8 < by + bh:
# # # Highlight the button and update the text
# # cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# # cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # # Update the output text in session_state
# # session_state["output_text"] += button.text
# # # Corrected return: Create a video frame from the ndarray image
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# # Shared state for output text
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# @st.cache_resource # Cache label colors
# def generate_label_colors():
# return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
# COLORS = generate_label_colors()
# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# h, w = image.shape[:2]
# # Process image with MediaPipe Hands
# results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# detections = []
# if results.multi_hand_landmarks:
# for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# # Extract bounding box
# x_min, y_min = 1, 1
# x_max, y_max = 0, 0
# for lm in hand_landmarks.landmark:
# x_min = min(x_min, lm.x)
# y_min = min(y_min, lm.y)
# x_max = max(x_max, lm.x)
# y_max = max(y_max, lm.y)
# # Scale bbox to image size
# box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# # Label and score
# label = hand_class.classification[0].label
# score = hand_class.classification[0].score
# detections.append(Detection(label=label, score=score, box=box))
# # Draw bounding box and label
# color = COLORS[0 if label == "Left" else 1]
# cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
# caption = f"{label}: {round(score * 100, 2)}%"
# cv2.putText(
# image,
# caption,
# (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# # Put results in the queue
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# webrtc_ctx = webrtc_streamer(
# key="keyboard-demo",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={
# "iceServers": get_ice_servers(),
# "iceTransportPolicy": "relay",
# },
# video_frame_callback=video_frame_callback,
# media_stream_constraints={"video": True, "audio": False},
# async_processing=True,
# )
# st.markdown("### Instructions")
# st.write(
# """
# 1. Turn on your webcam using the checkbox above.
# 2. Use hand gestures to interact with the virtual keyboard.
# """
# )
import logging
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from cvzone.HandTrackingModule import HandDetector
from cvzone.SelfiSegmentationModule import SelfiSegmentation
import os
import time
import av
import queue
from typing import List, NamedTuple
from sample_utils.turn import get_ice_servers
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", layout="wide")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')
# Initialize modules
detector = HandDetector(maxHands=1, detectionCon=0.8)
segmentor = SelfiSegmentation()
# Define virtual keyboard layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Button:
def __init__(self, pos, text, size=[100, 100]):
self.pos = pos
self.size = size
self.text = text
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
listImg = os.listdir('model/street') if os.path.exists('model/street') else []
if not listImg:
st.error("Error: 'street' directory is missing or empty. Please add background images.")
st.stop()
else:
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
indexImg = 0
prev_key_time = [time.time()] * 2
output_text = ""
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# img = frame.to_ndarray(format="bgr24")
# hands, img = detector.findHands(img, flipType=False)
# # Render hand detection results
# if hands:
# hand = hands[0]
# bbox = hand["bbox"]
# cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
# cv2.putText(img, 'OpenCV', (50,50), font,
# fontScale, color, thickness, cv2.LINE_AA)
# cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
# result_queue.put(hands)
# return av.VideoFrame.from_ndarray(img, format="bgr24")
# Initialize result queue
result_queue = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
# Ensure square input for MediaPipe
h, w, _ = img.shape
size = min(h, w)
img_cropped = img[:size, :size]
# Detect hands
hands, img_cropped = detector.findHands(img_cropped, flipType=False)
# Collect detections
detections = []
if hands:
for hand in hands:
bbox = hand["bbox"]
label = hand["type"]
score = hand["score"]
# Draw bounding box
cv2.rectangle(img_cropped, (bbox[0], bbox[1]),
(bbox[0] + bbox[2], bbox[1] + bbox[3]), (255, 0, 0), 2)
# Append detection details
detections.append({"label": label, "score": score, "bbox": bbox})
# Put detections into result queue
result_queue.put(detections)
return av.VideoFrame.from_ndarray(img_cropped, format="bgr24")
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# global indexImg, output_text
# img = frame.to_ndarray(format="bgr24")
# imgOut = segmentor.removeBG(img, imgList[indexImg])
# hands, imgOut = detector.findHands(imgOut, flipType=False)
# buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
# detections = []
# if hands:
# for i, hand in enumerate(hands):
# lmList = hand['lmList']
# bbox = hand['bbox']
# label = "Hand"
# score = hand['score']
# box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# detections.append(Detection(label=label, score=score, box=box))
# if lmList:
# x4, y4 = lmList[4][0], lmList[4][1]
# x8, y8 = lmList[8][0], lmList[8][1]
# distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# click_threshold = 10
# for button in buttonList:
# x, y = button.pos
# w, h = button.size
# if x < x8 < x + w and y < y8 < y + h:
# cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# if time.time() - prev_key_time[i] > 2:
# prev_key_time[i] = time.time()
# if button.text != 'BS' and button.text != 'SPACE':
# output_text += button.text
# elif button.text == 'BS':
# output_text = output_text[:-1]
# else:
# output_text += ' '
# result_queue.put(detections)
# st.session_state["output_text"] = output_text
# return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)
st.subheader("Output Text")
st.text_area("Live Input:", value=st.session_state["output_text"], height=200)