Pratyush101's picture
Update app.py
c324fea verified
raw
history blame
18.2 kB
# import logging
# import queue
# from pathlib import Path
# from typing import List, NamedTuple
# import mediapipe as mp
# import av
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from sample_utils.turn import get_ice_servers
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import time
# import os
# logger = logging.getLogger(__name__)
# st.title("Interactive Virtual Keyboard with Twilio Integration")
# st.info("Use your webcam to interact with the virtual keyboard via hand gestures.")
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# # Initialize components
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# # segmentor = SelfiSegmentation()
# # keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# # ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# # ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# # listImg = os.listdir('model/street')
# # imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
# # indexImg = 0
# # # Function to process the video frame from the webcam
# # def process_video_frame(frame, detector, segmentor, imgList, indexImg, keys, session_state):
# # # Convert the frame to a numpy array (BGR format)
# # image = frame.to_ndarray(format="bgr24")
# # # Remove background using SelfiSegmentation
# # imgOut = segmentor.removeBG(image, imgList[indexImg])
# # # Detect hands on the background-removed image
# # hands, img = detector.findHands(imgOut, flipType=False)
# # # Create a blank canvas for the keyboard
# # keyboard_canvas = np.zeros_like(img)
# # buttonList = []
# # # Create buttons for the virtual keyboard based on the keys list
# # for key in keys[0]:
# # buttonList.append(Button([30 + keys[0].index(key) * 105, 30], key))
# # for key in keys[1]:
# # buttonList.append(Button([30 + keys[1].index(key) * 105, 150], key))
# # for key in keys[2]:
# # buttonList.append(Button([30 + keys[2].index(key) * 105, 260], key))
# # # Draw the buttons on the keyboard canvas
# # for button in buttonList:
# # x, y = button.pos
# # cv2.rectangle(keyboard_canvas, (x, y), (x + button.size[0], y + button.size[1]), (255, 255, 255), -1)
# # cv2.putText(keyboard_canvas, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (0, 0, 0), 3)
# # # Handle input and gestures from detected hands
# # if hands:
# # for hand in hands:
# # lmList = hand["lmList"]
# # if lmList:
# # # Get the coordinates of the index finger tip (landmark 8)
# # x8, y8 = lmList[8][0], lmList[8][1]
# # for button in buttonList:
# # bx, by = button.pos
# # bw, bh = button.size
# # # Check if the index finger is over a button
# # if bx < x8 < bx + bw and by < y8 < by + bh:
# # # Highlight the button and update the text
# # cv2.rectangle(img, (bx, by), (bx + bw, by + bh), (0, 255, 0), -1)
# # cv2.putText(img, button.text, (bx + 20, by + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # # Update the output text in session_state
# # session_state["output_text"] += button.text
# # # Corrected return: Create a video frame from the ndarray image
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# # Shared state for output text
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# @st.cache_resource # Cache label colors
# def generate_label_colors():
# return np.random.uniform(0, 255, size=(2, 3)) # Two classes: Left and Right Hand
# COLORS = generate_label_colors()
# # Initialize MediaPipe Hands
# mp_hands = mp.solutions.hands
# detector = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.5)
# # Session-specific caching
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# # Hand detection callback
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# h, w = image.shape[:2]
# # Process image with MediaPipe Hands
# results = detector.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# detections = []
# if results.multi_hand_landmarks:
# for hand_landmarks, hand_class in zip(results.multi_hand_landmarks, results.multi_handedness):
# # Extract bounding box
# x_min, y_min = 1, 1
# x_max, y_max = 0, 0
# for lm in hand_landmarks.landmark:
# x_min = min(x_min, lm.x)
# y_min = min(y_min, lm.y)
# x_max = max(x_max, lm.x)
# y_max = max(y_max, lm.y)
# # Scale bbox to image size
# box = np.array([x_min * w, y_min * h, x_max * w, y_max * h]).astype("int")
# # Label and score
# label = hand_class.classification[0].label
# score = hand_class.classification[0].score
# detections.append(Detection(label=label, score=score, box=box))
# # Draw bounding box and label
# color = COLORS[0 if label == "Left" else 1]
# cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), color, 2)
# caption = f"{label}: {round(score * 100, 2)}%"
# cv2.putText(
# image,
# caption,
# (box[0], box[1] - 15 if box[1] - 15 > 15 else box[1] + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# # Put results in the queue
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# webrtc_ctx = webrtc_streamer(
# key="keyboard-demo",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={
# "iceServers": get_ice_servers(),
# "iceTransportPolicy": "relay",
# },
# video_frame_callback=video_frame_callback,
# media_stream_constraints={"video": True, "audio": False},
# async_processing=True,
# )
# st.markdown("### Instructions")
# st.write(
# """
# 1. Turn on your webcam using the checkbox above.
# 2. Use hand gestures to interact with the virtual keyboard.
# """
# )
#)
import logging
import cv2
import numpy as np
import mediapipe as mp
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import av
import queue
from typing import List
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Detection Queue
result_queue: queue.Queue[List[Detection]] = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=1.0, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
)
] if landmarks else []
if landmarks:
hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
foot = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]
# Calculate angles
knee_angle = calculate_angle(hip, knee, ankle)
hip_angle = calculate_angle(shoulder, hip, [hip[0], 0])
ankle_angle = calculate_angle(foot, ankle, knee)
# Display key angles
cv2.putText(image, f"Knee: {int(knee_angle)}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Hip: {int(hip_angle)}", (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cv2.putText(image, f"Ankle: {int(ankle_angle)}", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# Squat logic
if 80 < knee_angle < 110 and 29 < hip_angle < 40:
cv2.putText(image, "Squat Detected!", (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3)
else:
if hip_angle < 29:
cv2.putText(image, "Lean Forward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif hip_angle > 45:
cv2.putText(image, "Lean Backward!", (300, 200), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
if knee_angle < 80:
cv2.putText(image, "Squat Too Deep!", (300, 250), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
elif knee_angle > 110:
cv2.putText(image, "Lower Your Hips!", (300, 300), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
# WebRTC streamer configuration
webrtc_streamer(
key="squat-detection",
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True
)
# import logging
# import cv2
# import numpy as np
# import streamlit as st
# from streamlit_webrtc import WebRtcMode, webrtc_streamer
# from cvzone.HandTrackingModule import HandDetector
# from cvzone.SelfiSegmentationModule import SelfiSegmentation
# import os
# import time
# import av
# import queue
# from typing import List, NamedTuple
# from sample_utils.turn import get_ice_servers
# logger = logging.getLogger(__name__)
# # Streamlit settings
# st.set_page_config(page_title="Virtual Keyboard", layout="wide")
# st.title("Interactive Virtual Keyboard")
# st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
# Use 'a' and 'd' from the keyboard to change the background.''')
# # Initialize modules
# detector = HandDetector(maxHands=1, detectionCon=0.8)
# segmentor = SelfiSegmentation()
# # Define virtual keyboard layout
# keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
# ["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
# ["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
# class Button:
# def __init__(self, pos, text, size=[100, 100]):
# self.pos = pos
# self.size = size
# self.text = text
# class Detection(NamedTuple):
# label: str
# score: float
# box: np.ndarray
# # result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# listImg = os.listdir('model/street') if os.path.exists('model/street') else []
# if not listImg:
# st.error("Error: 'street' directory is missing or empty. Please add background images.")
# st.stop()
# else:
# imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg if cv2.imread(f'model/street/{imgPath}') is not None]
# indexImg = 0
# prev_key_time = [time.time()] * 2
# output_text = ""
# if "output_text" not in st.session_state:
# st.session_state["output_text"] = ""
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # img = frame.to_ndarray(format="bgr24")
# # hands, img = detector.findHands(img, flipType=False)
# # # Render hand detection results
# # if hands:
# # hand = hands[0]
# # bbox = hand["bbox"]
# # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (255, 0, 0), 2)
# # cv2.putText(img, 'OpenCV', (50,50), font,
# # fontScale, color, thickness, cv2.LINE_AA)
# # cv2.putText(img, 'OpenCV', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 1, cv2.LINE_AA)
# # result_queue.put(hands)
# # return av.VideoFrame.from_ndarray(img, format="bgr24")
# result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# image = frame.to_ndarray(format="bgr24")
# # Run inference
# blob = cv2.dnn.blobFromImage(
# cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
# )
# net.setInput(blob)
# output = net.forward()
# h, w = image.shape[:2]
# # Convert the output array into a structured form.
# output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
# output = output[output[:, 2] >= score_threshold]
# detections = [
# Detection(
# class_id=int(detection[1]),
# label=CLASSES[int(detection[1])],
# score=float(detection[2]),
# box=(detection[3:7] * np.array([w, h, w, h])),
# )
# for detection in output
# ]
# # Render bounding boxes and captions
# for detection in detections:
# caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
# color = COLORS[detection.class_id]
# xmin, ymin, xmax, ymax = detection.box.astype("int")
# cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
# cv2.putText(
# image,
# caption,
# (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
# cv2.FONT_HERSHEY_SIMPLEX,
# 0.5,
# color,
# 2,
# )
# result_queue.put(detections)
# return av.VideoFrame.from_ndarray(image, format="bgr24")
# # def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# # global indexImg, output_text
# # img = frame.to_ndarray(format="bgr24")
# # imgOut = segmentor.removeBG(img, imgList[indexImg])
# # hands, imgOut = detector.findHands(imgOut, flipType=False)
# # buttonList = [Button([30 + col * 105, 30 + row * 120], key) for row, line in enumerate(keys) for col, key in enumerate(line)]
# # detections = []
# # if hands:
# # for i, hand in enumerate(hands):
# # lmList = hand['lmList']
# # bbox = hand['bbox']
# # label = "Hand"
# # score = hand['score']
# # box = np.array([bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]])
# # detections.append(Detection(label=label, score=score, box=box))
# # if lmList:
# # x4, y4 = lmList[4][0], lmList[4][1]
# # x8, y8 = lmList[8][0], lmList[8][1]
# # distance = np.sqrt((x8 - x4) ** 2 + (y8 - y4) ** 2)
# # click_threshold = 10
# # for button in buttonList:
# # x, y = button.pos
# # w, h = button.size
# # if x < x8 < x + w and y < y8 < y + h:
# # cv2.rectangle(imgOut, button.pos, (x + w, y + h), (0, 255, 160), -1)
# # cv2.putText(imgOut, button.text, (x + 20, y + 70), cv2.FONT_HERSHEY_PLAIN, 5, (255, 255, 255), 3)
# # if (distance / np.sqrt(bbox[2] ** 2 + bbox[3] ** 2)) * 100 < click_threshold:
# # if time.time() - prev_key_time[i] > 2:
# # prev_key_time[i] = time.time()
# # if button.text != 'BS' and button.text != 'SPACE':
# # output_text += button.text
# # elif button.text == 'BS':
# # output_text = output_text[:-1]
# # else:
# # output_text += ' '
# # result_queue.put(detections)
# # st.session_state["output_text"] = output_text
# # return av.VideoFrame.from_ndarray(imgOut, format="bgr24")
# webrtc_streamer(
# key="virtual-keyboard",
# mode=WebRtcMode.SENDRECV,
# rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
# media_stream_constraints={"video": True, "audio": False},
# video_frame_callback=video_frame_callback,
# async_processing=True,
# )
# st.subheader("Output Text")
# st.text_area("Live Input:", value=st.session_state["output_text"], height=200)