Pratyush101's picture
Update app.py
495fa7e verified
raw
history blame
7.21 kB
import logging
import queue
from pathlib import Path
from typing import List, NamedTuple
import mediapipe as mp
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.download import download_file
from sample_utils.turn import get_ice_servers
# Logging setup
logger = logging.getLogger(__name__)
# Streamlit setup
st.title("AI Squat Detection using WebRTC")
st.info("Use your webcam for real-time squat detection.")
# Initialize MediaPipe components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
class Detection(NamedTuple):
class_id: int
label: str
score: float
box: np.ndarray
# Angle calculation function
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
counterL=0#Counter checks for number of curls
correct=0
incorrect=0
# Detection Queue
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global counterL, correct, incorrect, stage #The change made
# Initialize stage if not defined
if 'stage' not in globals():
stage = 'up'
correct = 0
incorrect = 0
image = frame.to_ndarray(format="bgr24")
h, w = image.shape[:2]
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
results = pose.process(image_rgb)
landmarks = results.pose_landmarks.landmark if results.pose_landmarks else []
# Corrected detection logic
detections = [
Detection(
class_id=0, # Assuming a generic class_id for pose detections
label="Pose",
score=0.7, # Full confidence as pose landmarks were detected
box=np.array([0, 0, image.shape[1], image.shape[0]]) # Full image as bounding box
)
] if landmarks else []
if landmarks:
hipL = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
kneeL = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
ankleL = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
shoulderL = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
footIndexL = [landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_FOOT_INDEX.value].y]
# Calculate angles
angleKneeL = calculate_angle(hipL, kneeL, ankleL)
angleHipL = calculate_angle(shoulderL, hipL, [hipL[0], 0])
angleAnkleL = calculate_angle(footIndexL, ankleL, kneeL)
#Visualize of left leg
cv2.putText(image, str(angleHipL),tuple(np.multiply(angleHipL, [640, 480]).astype(int)),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA)
# Update squat stage and count correct reps
if angleKneeL > 110 and stage == 'down':
stage = 'up'
if 18 < angleHipL < 40:
correct += 1
if 80 < angleKneeL < 110 and stage == 'up':
stage = 'down'
# Display feedback messages
if 10 < angleHipL < 18:
cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
cv2.putText(image,f"Bend Forward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(150,120,255),1,cv2.LINE_AA)
if angleHipL > 45:
cv2.rectangle(image, (310, 180), (450, 220), (0, 0, 0), -1)
cv2.putText(image,f"Bend Backward",(320,200),cv2.FONT_HERSHEY_SIMPLEX,1,(80,120,255),1,cv2.LINE_AA)
# # # stage 2
# # # Incorrect movements
# # 3. Knees not low enough
# if 110 < angleKneeL < 130:
# cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
# cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
# # 3. Knees not low enough and not completed the squat
# if angleKneeL>130 and stage=='mid':
# cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
# cv2.putText(image,f"Lower Your Hips",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
# incorrect+=1
# stage='up'
# # 4. Squat too deep
# if angleKneeL < 80 and stage=='mid':
# cv2.rectangle(image, (220, 40), (450, 80), (0, 0, 0), -1)
# cv2.putText(image,f"Squat too deep",(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
# incorrect +=1
# stage='up'
# # stage 4
# if (80 < angleKneeL < 110) and stage=='mid':
# if (18 < angleHipL < 40): # Valid "down" position
# correct+=1
# stage='up'
# if (angleKneeL>110):
# stage='mid'
# cv2.putText(image,f"Correct:{correct}",
# (400,120),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,0),1,cv2.LINE_AA)
# cv2.putText(image,f"Incorrect:{incorrect}",
# (400,150),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,0),1,cv2.LINE_AA)
#Render Counter to our camera screen
#Setup Status box
cv2.rectangle(image,(0,0),(500,80),(245,117,16),-1)
#REP data
cv2.putText(image,'Left',(10,12),
cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1,cv2.LINE_AA)
cv2.putText(image,str(correct),
(10,60),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),2,cv2.LINE_AA)
#Stage data for left leg
cv2.putText(image,'STAGE',(230,12),
cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1,cv2.LINE_AA)
cv2.putText(image,stage,
(230,60),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1,cv2.LINE_AA)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,mp_drawing.DrawingSpec(color=(255, 175, 0), thickness=2, circle_radius=2),mp_drawing.DrawingSpec(color=(0, 255, 200), thickness=2, circle_radius=2))
result_queue.put(detections)
return av.VideoFrame.from_ndarray(image, format="bgr24")
# WebRTC streamer configuration
webrtc_streamer(
key="squat-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)