Pratyush101's picture
Update app.py
ce9d171 verified
raw
history blame
3.51 kB
import logging
import queue
from typing import List, NamedTuple
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from sample_utils.turn import get_ice_servers
import mediapipe as mp
import os
import time
# Logger Setup
logger = logging.getLogger(__name__)
# Streamlit settings
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️")
st.title("Interactive Virtual Keyboard")
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard.
Use 'a' and 'd' from the keyboard to change the background.''')
# Initialize MediaPipe Hand Detector
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7)
mp_drawing = mp.solutions.drawing_utils
# Define virtual keyboard layout
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"],
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"],
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]]
class Detection(NamedTuple):
label: str
score: float
box: np.ndarray
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
# Load background images
listImg = os.listdir('model/street') if os.path.exists('model/street') else []
if not listImg:
st.error("Error: 'street' directory is missing or empty. Please add background images.")
st.stop()
else:
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg]
imgList = [img for img in imgList if img is not None]
indexImg = 0
output_text = ""
if "output_text" not in st.session_state:
st.session_state["output_text"] = ""
# Video Frame Callback
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
global indexImg, output_text
img = frame.to_ndarray(format="bgr24")
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Process the frame with MediaPipe
result = hands.process(img_rgb)
detections = []
if result.multi_hand_landmarks:
for hand_landmarks in result.multi_hand_landmarks:
mp_drawing.draw_landmarks(
img, hand_landmarks, mp_hands.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
# Extract bounding box for detection info
x_min, y_min = 1.0, 1.0
x_max, y_max = 0.0, 0.0
for lm in hand_landmarks.landmark:
x_min = min(x_min, lm.x)
y_min = min(y_min, lm.y)
x_max = max(x_max, lm.x)
y_max = max(y_max, lm.y)
h, w, _ = img.shape
bbox = np.array([int(x_min * w), int(y_min * h), int((x_max - x_min) * w), int((y_max - y_min) * h)])
detections.append(Detection(label="Hand", score=1.0, box=bbox))
logger.info(f"Detected {len(detections)} hand(s).")
else:
logger.info("No hands detected.")
result_queue.put(detections)
st.session_state["output_text"] = output_text
return av.VideoFrame.from_ndarray(img, format="bgr24")
# WebRTC Streamer
webrtc_streamer(
key="virtual-keyboard",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"},
media_stream_constraints={"video": True, "audio": False},
video_frame_callback=video_frame_callback,
async_processing=True,
)