|
import logging |
|
import queue |
|
from typing import List, NamedTuple |
|
import av |
|
import cv2 |
|
import numpy as np |
|
import streamlit as st |
|
from streamlit_webrtc import WebRtcMode, webrtc_streamer |
|
from sample_utils.turn import get_ice_servers |
|
import mediapipe as mp |
|
import os |
|
import time |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.set_page_config(page_title="Virtual Keyboard", page_icon="🏋️") |
|
st.title("Interactive Virtual Keyboard") |
|
st.subheader('''Turn on the webcam and use hand gestures to interact with the virtual keyboard. |
|
Use 'a' and 'd' from the keyboard to change the background.''') |
|
|
|
|
|
mp_hands = mp.solutions.hands |
|
hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7) |
|
mp_drawing = mp.solutions.drawing_utils |
|
|
|
|
|
keys = [["Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P"], |
|
["A", "S", "D", "F", "G", "H", "J", "K", "L", ";"], |
|
["Z", "X", "C", "V", "B", "N", "M", ",", ".", "/"]] |
|
|
|
class Detection(NamedTuple): |
|
label: str |
|
score: float |
|
box: np.ndarray |
|
|
|
result_queue: "queue.Queue[List[Detection]]" = queue.Queue() |
|
|
|
|
|
listImg = os.listdir('model/street') if os.path.exists('model/street') else [] |
|
if not listImg: |
|
st.error("Error: 'street' directory is missing or empty. Please add background images.") |
|
st.stop() |
|
else: |
|
imgList = [cv2.imread(f'model/street/{imgPath}') for imgPath in listImg] |
|
imgList = [img for img in imgList if img is not None] |
|
|
|
indexImg = 0 |
|
output_text = "" |
|
|
|
if "output_text" not in st.session_state: |
|
st.session_state["output_text"] = "" |
|
|
|
|
|
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame: |
|
global indexImg, output_text |
|
|
|
img = frame.to_ndarray(format="bgr24") |
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
result = hands.process(img_rgb) |
|
|
|
detections = [] |
|
if result.multi_hand_landmarks: |
|
for hand_landmarks in result.multi_hand_landmarks: |
|
mp_drawing.draw_landmarks( |
|
img, hand_landmarks, mp_hands.HAND_CONNECTIONS, |
|
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=4), |
|
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2) |
|
) |
|
|
|
x_min, y_min = 1.0, 1.0 |
|
x_max, y_max = 0.0, 0.0 |
|
for lm in hand_landmarks.landmark: |
|
x_min = min(x_min, lm.x) |
|
y_min = min(y_min, lm.y) |
|
x_max = max(x_max, lm.x) |
|
y_max = max(y_max, lm.y) |
|
|
|
h, w, _ = img.shape |
|
bbox = np.array([int(x_min * w), int(y_min * h), int((x_max - x_min) * w), int((y_max - y_min) * h)]) |
|
detections.append(Detection(label="Hand", score=1.0, box=bbox)) |
|
|
|
logger.info(f"Detected {len(detections)} hand(s).") |
|
else: |
|
logger.info("No hands detected.") |
|
|
|
result_queue.put(detections) |
|
st.session_state["output_text"] = output_text |
|
return av.VideoFrame.from_ndarray(img, format="bgr24") |
|
|
|
|
|
webrtc_streamer( |
|
key="virtual-keyboard", |
|
mode=WebRtcMode.SENDRECV, |
|
rtc_configuration={"iceServers": get_ice_servers(), "iceTransportPolicy": "relay"}, |
|
media_stream_constraints={"video": True, "audio": False}, |
|
video_frame_callback=video_frame_callback, |
|
async_processing=True, |
|
) |
|
|