File size: 10,108 Bytes
0613bb7
 
 
 
 
 
 
 
 
 
 
d82c9b1
0613bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Import necessary libraries
import streamlit as st
import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
import PyPDF2
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
import spacy
from numpy import triu

# Download necessary NLTK data
nltk.download('punkt')

# Define regular expressions for pattern matching
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
float_digit_regex = re.compile(r'^\d{10}$')
email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})')

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
    pdf_reader = PyPDF2.PdfReader(pdf_file)
    text = ""
    for page_num in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page_num].extract_text()
    return text

# Function to tokenize text using the NLP model
def tokenize_text(text, nlp_model):
    doc = nlp_model(text, disable=["tagger", "parser"])
    tokens = [(token.text.lower(), token.label_) for token in doc.ents]
    return tokens

# Function to extract CGPA from a resume
def extract_cgpa(resume_text):
    cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
    match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
    if match:
        cgpa = match.group(1) if match.group(1) else match.group(2)
        return float(cgpa)
    else:
        return None

# Function to extract skills from a resume
def extract_skills(text, skills_keywords):
    skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
    return skills

# Function to preprocess text
def preprocess_text(text):
    return word_tokenize(text.lower())

# Function to train a Doc2Vec model
def train_doc2vec_model(documents):
    model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
    model.build_vocab(documents)
    model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)
    return model

# Function to calculate similarity between two texts
def calculate_similarity(model, text1, text2):
    vector1 = model.infer_vector(preprocess_text(text1))
    vector2 = model.infer_vector(preprocess_text(text2))
    return model.dv.cosine_similarities(vector1, [vector2])[0]

# Function to calculate accuracy
def accuracy_calculation(true_positives, false_positives, false_negatives):
    total = true_positives + false_positives + false_negatives
    accuracy = true_positives / total if total != 0 else 0
    return accuracy

# Streamlit Frontend
st.markdown("# Resume Matching Tool ๐Ÿ“ƒ๐Ÿ“ƒ")
st.markdown("An application to match resumes with a job description.")

# Sidebar - File Upload for Resumes
st.sidebar.markdown("## Upload Resumes PDF")
resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)

if resumes_files:
    # Sidebar - File Upload for Job Descriptions
    st.sidebar.markdown("## Upload Job Description PDF")
    job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"])

    if job_descriptions_file:
        # Load the pre-trained NLP model
        nlp_model_path = "en_Resume_Matching_Keywords"
        nlp = spacy.load(nlp_model_path)

        # Backend Processing
        job_description_text = extract_text_from_pdf(job_descriptions_file)
        resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files]
        job_description_text = extract_text_from_pdf(job_descriptions_file)
        job_description_tokens = tokenize_text(job_description_text, nlp)

        # Initialize counters
        overall_skill_matches = 0
        overall_qualification_matches = 0

        # Create a list to store individual results
        results_list = []
        job_skills = set()
        job_qualifications = set()

        for job_token, job_label in job_description_tokens:
            if job_label == 'QUALIFICATION':
                job_qualifications.add(job_token.replace('\n', ' '))
            elif job_label == 'SKILLS':
                job_skills.add(job_token.replace('\n', ' '))

        job_skills_number = len(job_skills)
        job_qualifications_number = len(job_qualifications)

        # Lists to store counts of matched skills for all resumes
        skills_counts_all_resumes = []

        # Iterate over all uploaded resumes
        for uploaded_resume in resumes_files:
            resume_text = extract_text_from_pdf(uploaded_resume)
            resume_tokens = tokenize_text(resume_text, nlp)

            # Initialize counters for individual resume
            skillMatch = 0
            qualificationMatch = 0
            cgpa = ""

            # Lists to store matched skills and qualifications for each resume
            matched_skills = set()
            matched_qualifications = set()
            email = set()
            phone = set()
            name = set()

            # Compare the tokens in the resume with the job description
            for resume_token, resume_label in resume_tokens:
                for job_token, job_label in job_description_tokens:
                    if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
                        if resume_label == 'SKILLS':
                            matched_skills.add(resume_token.replace('\n', ' '))
                        elif resume_label == 'QUALIFICATION':
                            matched_qualifications.add(resume_token.replace('\n', ' '))
                    elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
                        phone.add(resume_token)  
                    elif resume_label == 'QUALIFICATION':
                        matched_qualifications.add(resume_token.replace('\n', ' '))

            skillMatch = len(matched_skills)
            qualificationMatch = len(matched_qualifications)

            # Convert the list of emails to a set
            email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
            email.update(email_set)

            numberphone=""
            for email_str in email:
                numberphone = email_with_phone_regex.search(email_str)
                if numberphone:
                    email.remove(email_str)
                    val=numberphone.group(1) or numberphone.group(2)
                    phone.add(val)
                    email.add(email_str.strip(val))

            # Increment overall counters based on matches
            overall_skill_matches += skillMatch
            overall_qualification_matches += qualificationMatch

            # Add count of matched skills for this resume to the list
            skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills])

            # Create a dictionary for the current resume and append to the results list
            result_dict = {
                "Resume": uploaded_resume.name,
                "Similarity Score": (skillMatch/job_skills_number)*100,
                "Skill Matches": skillMatch,
                "Matched Skills": matched_skills,
                "CGPA": extract_cgpa(resume_text),
                "Email": email,
                "Phone": phone,
                "Qualification Matches": qualificationMatch,
                "Matched Qualifications": matched_qualifications
            }

            results_list.append(result_dict)

        # Display overall matches
        st.subheader("Overall Matches")
        st.write(f"Total Skill Matches: {overall_skill_matches}")
        st.write(f"Total Qualification Matches: {overall_qualification_matches}")
        st.write(f"Job Qualifications: {job_qualifications}")
        st.write(f"Job Skills: {job_skills}")

        # Display individual results in a table
        results_df = pd.DataFrame(results_list)
        st.subheader("Individual Results")
        st.dataframe(results_df)
        tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
        model_resumes = train_doc2vec_model(tagged_resumes)

        st.subheader("\nHeatmap:")
       
        # Get skills keywords from user input
        skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):")
        skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()]

        if skills_keywords:
            # Calculate the similarity score between each skill keyword and the resume text
            skills_similarity_scores = []
            for resume_text in resumes_texts:
                resume_text_similarity_scores = []
                for skill in skills_keywords:
                    similarity_score = calculate_similarity(model_resumes, resume_text, skill)
                    resume_text_similarity_scores.append(similarity_score)
                skills_similarity_scores.append(resume_text_similarity_scores)

            # Create a DataFrame with the similarity scores and set the index to the names of the PDFs
            skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])

            # Plot the heatmap
            fig, ax = plt.subplots(figsize=(12, 8))
            sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
            ax.set_title('Heatmap for Skills Similarity')
            ax.set_xlabel('Skills')
            ax.set_ylabel('Resumes')

            # Rotate the y-axis labels for better readability
            plt.yticks(rotation=0)

            # Display the Matplotlib figure using st.pyplot()
            st.pyplot(fig)
        else:
            st.write("Please enter at least one skill keyword.")

    else:
        st.warning("Please upload the Job Description PDF to proceed.")
else:
    st.warning("Please upload Resumes PDF to proceed.")