Image-Gen / app.py
Profakerr's picture
Update app.py
5e19969 verified
raw
history blame
5.23 kB
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
import torch
import gradio as gr
import spaces
lora1 = "OedoSoldier/detail-tweaker-lora"
@spaces.GPU
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images=1, width=512, height=512):
if model == "Real5.0":
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
elif model == "Real5.1":
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
else:
model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae"
).to("cuda")
text_encoder = CLIPTextModel.from_pretrained(
model_id,
subfolder="text_encoder"
).to("cuda")
tokenizer = CLIPTokenizer.from_pretrained(
model_id,
subfolder="tokenizer"
)
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet"
).to("cuda")
pipe = DiffusionPipeline.from_pretrained(
model_id,
text_encoder=text_encoder,
tokenizer=tokenizer,
vae=vae
).to("cuda")
pipe.load_lora_weights(lora1)
if model == "Real6.0":
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config,
algorithm_type="dpmsolver++",
use_karras_sigmas=True
)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).to("cuda")
negative_text_inputs = tokenizer(
negative_prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).to("cuda")
prompt_embeds = text_encoder(text_inputs.input_ids)[0]
negative_prompt_embeds = text_encoder(negative_text_inputs.input_ids)[0]
# Generate the image
result = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
cross_attention_kwargs={"scale": 1},
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
num_images_per_prompt=num_images
)
return result.images
title = """<h1 align="center">ProFaker</h1>"""
# Create the Gradio interface
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
# Input components
prompt = gr.Textbox(
label="Prompt",
info="Enter your image description here...",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
info="Enter what you don't want in Image...",
lines=3
)
generate_button = gr.Button("Generate Image")
with gr.Accordion("Advanced Options", open=False):
model = gr.Dropdown(
choices=["Real6.0","Real5.1","Real5.0"],
value="Real6.0",
label="Model",
)
num_images = gr.Slider( # New slider for number of images
minimum=1,
maximum=4,
value=1,
step=1,
label="Number of Images to Generate"
)
width = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Image Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Image Height"
)
steps_slider = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of Steps"
)
guidance_slider = gr.Slider(
minimum=1,
maximum=10,
value=7.0,
step=0.5,
label="Guidance Scale"
)
with gr.Column():
# Output component
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=2
)
# Connect the interface to the generation function
generate_button.click(
fn=generate_image,
inputs=[prompt, negative_prompt, steps_slider, guidance_slider, model, num_images, width, height],
outputs=gallery
)
demo.queue(max_size=10).launch(share=False)