Update main.py
Browse files
main.py
CHANGED
@@ -1,3 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from app_config import AppConfig # Import the configurations class
|
@@ -93,6 +282,18 @@ def main():
|
|
93 |
st.error(f"Expected column '{intervention_column}' not found.")
|
94 |
return
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# Compute Intervention Session Statistics
|
97 |
intervention_stats = data_processor.compute_intervention_statistics(df)
|
98 |
st.subheader("Intervention Dosage")
|
@@ -113,18 +314,6 @@ def main():
|
|
113 |
|
114 |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
115 |
|
116 |
-
# Compute Student Metrics
|
117 |
-
student_metrics_df = data_processor.compute_student_metrics(df)
|
118 |
-
st.subheader("Student Attendance and Engagement")
|
119 |
-
st.write(student_metrics_df)
|
120 |
-
|
121 |
-
# Compute Student Metric Averages
|
122 |
-
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
123 |
-
|
124 |
-
# Plot and download student metrics
|
125 |
-
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
126 |
-
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
127 |
-
|
128 |
# Evaluate each student and build decision tree diagrams
|
129 |
student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
130 |
lambda row: data_processor.evaluate_student(row), axis=1
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# from app_config import AppConfig # Import the configurations class
|
4 |
+
# from data_processor import DataProcessor # Import the data analysis class
|
5 |
+
# from visualization import Visualization # Import the data viz class
|
6 |
+
# from ai_analysis import AIAnalysis # Import the ai analysis class
|
7 |
+
# from sidebar import Sidebar # Import the Sidebar class
|
8 |
+
# from report import ReportGenerator
|
9 |
+
|
10 |
+
# def main():
|
11 |
+
# # Initialize the app configuration
|
12 |
+
# app_config = AppConfig()
|
13 |
+
|
14 |
+
# # Initialize the session state
|
15 |
+
# if 'ai_recommendations' not in st.session_state:
|
16 |
+
# st.session_state.ai_recommendations = None
|
17 |
+
|
18 |
+
# # Initialize the sidebar
|
19 |
+
# sidebar = Sidebar()
|
20 |
+
# sidebar.display()
|
21 |
+
|
22 |
+
# # Initialize the data processor
|
23 |
+
# data_processor = DataProcessor()
|
24 |
+
|
25 |
+
# # Initialize the visualization handler
|
26 |
+
# visualization = Visualization()
|
27 |
+
|
28 |
+
# # Initialize the AI analysis handler
|
29 |
+
# ai_analysis = AIAnalysis(data_processor.client)
|
30 |
+
|
31 |
+
# st.title("Literacy Implementation Record Data Analysis")
|
32 |
+
|
33 |
+
# # Add the descriptive text
|
34 |
+
# st.markdown("""
|
35 |
+
# This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction?
|
36 |
+
# """)
|
37 |
+
|
38 |
+
# # Date selection option
|
39 |
+
# date_option = st.radio(
|
40 |
+
# "Select data range:",
|
41 |
+
# ("All Data", "Date Range")
|
42 |
+
# )
|
43 |
+
|
44 |
+
# # Initialize start and end date variables
|
45 |
+
# start_date = None
|
46 |
+
# end_date = None
|
47 |
+
|
48 |
+
# if date_option == "Date Range":
|
49 |
+
# # Prompt user to enter start and end dates
|
50 |
+
# start_date = st.date_input("Start Date")
|
51 |
+
# end_date = st.date_input("End Date")
|
52 |
+
|
53 |
+
# # Ensure start date is before end date
|
54 |
+
# if start_date > end_date:
|
55 |
+
# st.error("Start date must be before end date.")
|
56 |
+
# return
|
57 |
+
|
58 |
+
# # File uploader
|
59 |
+
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
60 |
+
|
61 |
+
# if uploaded_file is not None:
|
62 |
+
# try:
|
63 |
+
# # Read the Excel file into a DataFrame
|
64 |
+
# df = data_processor.read_excel(uploaded_file)
|
65 |
+
|
66 |
+
# # Format the session data
|
67 |
+
# df = data_processor.format_session_data(df)
|
68 |
+
|
69 |
+
# # Replace student names with initials
|
70 |
+
# df = data_processor.replace_student_names_with_initials(df)
|
71 |
+
|
72 |
+
# # Filter data if date range is selected
|
73 |
+
# if date_option == "Date Range":
|
74 |
+
# # Convert start_date and end_date to datetime
|
75 |
+
# start_date = pd.to_datetime(start_date).date()
|
76 |
+
# end_date = pd.to_datetime(end_date).date()
|
77 |
+
|
78 |
+
# # Identify the date column
|
79 |
+
# date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
80 |
+
# if date_column:
|
81 |
+
# # Filter the DataFrame based on the selected date range
|
82 |
+
# df = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)]
|
83 |
+
# else:
|
84 |
+
# st.error("Date column not found in the data.")
|
85 |
+
# return
|
86 |
+
|
87 |
+
# st.subheader("Uploaded Data")
|
88 |
+
# st.write(df)
|
89 |
+
|
90 |
+
# # Ensure the intervention column is determined
|
91 |
+
# intervention_column = data_processor.get_intervention_column(df)
|
92 |
+
# if intervention_column not in df.columns:
|
93 |
+
# st.error(f"Expected column '{intervention_column}' not found.")
|
94 |
+
# return
|
95 |
+
|
96 |
+
# # Compute Intervention Session Statistics
|
97 |
+
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
98 |
+
# st.subheader("Intervention Dosage")
|
99 |
+
# st.write(intervention_stats)
|
100 |
+
|
101 |
+
# # Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
102 |
+
# col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
103 |
+
|
104 |
+
# with col1:
|
105 |
+
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
106 |
+
|
107 |
+
# with col2:
|
108 |
+
# intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
109 |
+
# # Display the "Intervention Dosage (%)" text
|
110 |
+
# st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
111 |
+
# # Display the frequency value below it
|
112 |
+
# st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
113 |
+
|
114 |
+
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
115 |
+
|
116 |
+
# # Compute Student Metrics
|
117 |
+
# student_metrics_df = data_processor.compute_student_metrics(df)
|
118 |
+
# st.subheader("Student Attendance and Engagement")
|
119 |
+
# st.write(student_metrics_df)
|
120 |
+
|
121 |
+
# # Compute Student Metric Averages
|
122 |
+
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
123 |
+
|
124 |
+
# # Plot and download student metrics
|
125 |
+
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
126 |
+
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
127 |
+
|
128 |
+
# # Evaluate each student and build decision tree diagrams
|
129 |
+
# student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
130 |
+
# lambda row: data_processor.evaluate_student(row), axis=1
|
131 |
+
# )
|
132 |
+
# st.subheader("Student Evaluations")
|
133 |
+
# st.write(student_metrics_df[['Student', 'Evaluation']])
|
134 |
+
|
135 |
+
# # Build and display decision tree diagrams for each student
|
136 |
+
# for index, row in student_metrics_df.iterrows():
|
137 |
+
# tree_diagram = visualization.build_tree_diagram(row)
|
138 |
+
|
139 |
+
# # Get the student's name from the DataFrame
|
140 |
+
# student_name = row['Student']
|
141 |
+
|
142 |
+
# # Use st.expander to wrap the graphviz chart with the student's name
|
143 |
+
# with st.expander(f"{student_name} Decision Tree", expanded=False):
|
144 |
+
# st.graphviz_chart(tree_diagram.source)
|
145 |
+
|
146 |
+
# # Generate Notes and Recommendations using LLM
|
147 |
+
# if st.session_state.ai_recommendations is None:
|
148 |
+
# with st.spinner("Generating MTSS.ai Analysis..."):
|
149 |
+
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
150 |
+
# # recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
151 |
+
# recommendations = ai_analysis.prompt_response_from_mistral_llm(llm_input)
|
152 |
+
# st.session_state.ai_recommendations = recommendations
|
153 |
+
|
154 |
+
# # Display the recommendations
|
155 |
+
# st.subheader("MTSS.ai Analysis")
|
156 |
+
# # st.markdown(recommendations)
|
157 |
+
# st.markdown(st.session_state.ai_recommendations)
|
158 |
+
|
159 |
+
# # Download AI output
|
160 |
+
# # ai_analysis.download_llm_output(recommendations, "MTSSai_Report.txt")
|
161 |
+
# ai_analysis.download_llm_output(st.session_state.ai_recommendations, "MTSSai_Report.txt")
|
162 |
+
|
163 |
+
# # Generate the PDF Report using the stored recommendations
|
164 |
+
# report_gen = ReportGenerator()
|
165 |
+
# combined_pdf = report_gen.create_combined_pdf(
|
166 |
+
# intervention_fig,
|
167 |
+
# student_metrics_fig,
|
168 |
+
# st.session_state.ai_recommendations
|
169 |
+
# )
|
170 |
+
|
171 |
+
# # Add the download button for the PDF
|
172 |
+
# st.download_button(
|
173 |
+
# label="Download MTSS.ai Report (PDF)",
|
174 |
+
# data=combined_pdf,
|
175 |
+
# file_name="MTSSai_LIR_Report.pdf",
|
176 |
+
# mime="application/pdf",
|
177 |
+
# icon="📄",
|
178 |
+
# use_container_width=True
|
179 |
+
# )
|
180 |
+
|
181 |
+
# except Exception as e:
|
182 |
+
# st.error(f"Error processing the file: {str(e)}")
|
183 |
+
|
184 |
+
# if __name__ == '__main__':
|
185 |
+
# main()
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
import streamlit as st
|
191 |
import pandas as pd
|
192 |
from app_config import AppConfig # Import the configurations class
|
|
|
282 |
st.error(f"Expected column '{intervention_column}' not found.")
|
283 |
return
|
284 |
|
285 |
+
# Compute Student Metrics
|
286 |
+
student_metrics_df = data_processor.compute_student_metrics(df)
|
287 |
+
st.subheader("Student Attendance and Engagement")
|
288 |
+
st.write(student_metrics_df)
|
289 |
+
|
290 |
+
# Compute Student Metric Averages
|
291 |
+
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
292 |
+
|
293 |
+
# Plot and download student metrics
|
294 |
+
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
295 |
+
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
296 |
+
|
297 |
# Compute Intervention Session Statistics
|
298 |
intervention_stats = data_processor.compute_intervention_statistics(df)
|
299 |
st.subheader("Intervention Dosage")
|
|
|
314 |
|
315 |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
# Evaluate each student and build decision tree diagrams
|
318 |
student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
319 |
lambda row: data_processor.evaluate_student(row), axis=1
|