E_P / rag_utils.py
Programmes's picture
Update rag_utils.py
87392ed verified
raw
history blame
1.73 kB
import os
import faiss
import pickle
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
index = faiss.read_index(index_path)
with open(doc_path, "rb") as f:
documents = pickle.load(f)
return index, documents
def get_embedding_model():
# Pas besoin de token ici, modèle public
print("✅ Chargement de l'encodeur multi-qa-MiniLM-L6-cos-v1")
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
def query_index(question, index, documents, model, k=3):
question_embedding = model.encode([question])
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
return [documents[i] for i in indices[0]]
def generate_answer(question, context):
token = os.getenv("HUGGINGFACE") # requis pour Mistral
model_id = "mgoogle/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="auto",
torch_dtype=torch.float16
)
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)
print("🔍 Contexte utilisé pour la génération :")
print(context[:500])
return tokenizer.decode(outputs[0], skip_special_tokens=True)